Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(4): 2140-2152, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38470456

RESUMO

Skin injuries lead to a large burden of morbidity. Although numerous clinical and scientific strategies have been investigated to repair injured skin, optimal regeneration therapy still poses a considerable obstacle. To address this challenge, decellularized extracellular matrix-based scaffolds recellularized with stem cells offer significant advancements in skin regeneration and wound healing. Herein, a decellularized human placental sponge (DPS) was fabricated using the decellularization and freeze-drying technique and then recellularized with human adipose-derived mesenchymal cells (MSCs). The biological and biomechanical properties and skin full-thickness wound healing capacity of the stem cells-DPS constructs were investigated in vitro and in vivo. The DPS exhibited a uniform 3D microstructure with an interconnected pore network, 89.21% porosity, a low degradation rate, and good mechanical properties. The DPS and MSCs-DPS constructs were implanted in skin full-thickness wound models in mice. An accelerated wound healing was observed in the wounds implanted with the MSCs-DPS construct when compared to DPS and control (wounds with no treatment) during 7 and 21 days postimplantation follow-up. In the MSCs-DPS group, the wound was completely re-epithelialized, the epidermis layer was properly organized, and the dermis and epidermis' bilayer structures were restored after 7 days. Our findings suggest that DPS is an excellent carrier for MSC culture and delivery to skin wounds and now promises to proceed with clinical evaluations.


Assuntos
Células-Tronco Mesenquimais , Cicatrização , Humanos , Camundongos , Feminino , Gravidez , Animais , Placenta , Pele/lesões , Modelos Animais
2.
Sci Rep ; 12(1): 9813, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697707

RESUMO

One of the factors that causes severe metabolic imbalance and abnormal changes in many tissues, especially in the pancreas, is the pathological disease of diabetes mellitus. Therefore, in this study, the therapeutic effects of Scrophularia striata were investigated using an animal model in the control of diabetic injury and pancreatic complications caused by diabetes. A total of 66 rats (weight 220-250 g) were randomly divided into: Healthy Control group (rats without diabetes receiving Propylene glycol as solvent); Diabetic control group; 3 experimental healthy groups (receiving the extract with doses of 100, 200 and 400 mg/kg bw/day); 3 treatment groups; and3 pretreatment groups. Diabetes was induced in rats by intraperitoneal STZ (60 mg/kg bw). FBS, HbA1c and insulin were measured after 4 weeks. Pdx1 and Ins1 gene expression was assessed by RT-PCR. The histological evaluation was also performed with H&E staining. The data were analyzed by SPSS ver20 using ANOVA and Tukey tests. By treatment with S. striata ethanolic extract, these factors were close to the normal range. The expression of the Pdx1 and Ins1 genes increased in the treated rats with S. striata extract. Analysis of the obtained data indicates the effect of S. striata in improving the complications of diabetes in rats and can be considered for therapeutic purposes.


Assuntos
Diabetes Mellitus Experimental , Scrophularia , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Etanol , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Pâncreas/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Ratos Wistar , Scrophularia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...