Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 262: 115194, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37385018

RESUMO

Aflatoxin B1 (AFB1) is a common environmental pollutant that poses a major hazard to both humans and animals. Acacia senegal (Gum) is well-known for having antioxidant and anti-inflammatory bioactive compounds. Our study aimed to scout the nephroprotective effects of Acacia gum (Gum) against AFB1-induced renal damage. Four groups of rats were designed: Control, Gum (7.5 mg/kg), AFB1 (200 µg/kg b.w) and AFB1-Gum, rats were co-treated with both Gum and AFB1. Gas chromatography-mass spectrometry (GC/MS) analysis was done to determine the phytochemical constituents in Gum. AFB1 triggered profound alterations in kidney function parameters (urea, creatinine, uric acid, and alkaline phosphatase) and renal histological architecture. Additionally, AFB1 exposure evoked up-regulation of mRNA expression levels of inflammatory cytokines, including interleukin-6 (IL-6), tumor necrosis factor α (TNFα), inducible nitric oxide synthase (iNOS), and nuclear factor kB p65 (NF-κB/P65) in renal tissue. The oxidative distress and apoptotic cascade are also instigated by AFB1 intoxication as depicted in down-regulated protein expression of the nuclear factor erythroid 2-related factor 2 (Nrf2) and superoxide dismutase type 1 (SOD1) along with upregulation of cytochrome c (Cyto c), and cleaved Caspase3 (Casp3-17 and 19) in renal tissue. In conclusion, current study obviously confirms the alleviating effects of Gum supplementation against AFB1-induced renal dysfunction, oxidative harm, inflammation, and cell death. These mitigating effects are suggested to be attributed to Gum's antioxidant and anti-inflammatory activities. Our results recommend Gum supplementation as add-on agents to food that might aid in protection from AFB1-induced nephrotoxicity.

2.
Toxics ; 11(3)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36977038

RESUMO

Doxorubicin (DOX) is a frequent chemotherapeutic drug used to treat various malignant tumors. One of the key factors that diminish its therapeutic importance is DOX-induced nephrotoxicity. The first-line oral antidiabetic drug is metformin (Met), which also has antioxidant properties. The purpose of our study was to investigate the underlying molecular mechanisms for the potential protective effects of Met on DOX-triggered nephrotoxicity. Four animal groups were assigned as follows; animals received vehicle (control group), 200 mg/kg Met (Met group), DOX 15 mg/kg DOX (DOX group), and a combination of DOX and Met (DOX/Met group). Our results demonstrated that DOX administration caused marked histological alterations of widespread inflammation and tubular degeneration. Notably, the DOX-induced dramatic up-regulation of the nuclear factor-kappa B/P65 (NF-κB/P65), microtubule-associated protein light chain 3B (LC3B), neutrophil gelatinase-associated lipocalin (NGAL), interleukin-1beta (IL-1ß), 8-hydroxy-2' -deoxyguanosine (8-OHdG), and Beclin-1 in renal tissue. A marked increase in the malondialdehyde (MDA) tissue level and a decrease in the total antioxidant capacity (TAC) were also recorded in DOX-exposed animals. Interestingly, Met could minimize all histopathological changes as well as the disruptions caused by DOX in the aforementioned measures. Thus, Met provided a workable method for suppressing the nephrotoxicity that occurred during the DOX regimen via the deactivation of the Beclin-1/LC3B pathway.

3.
BMC Microbiol ; 21(1): 257, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556033

RESUMO

BACKGROUND: The Shiga toxin-producing Escherichia coli (STEC) represented a great risk to public health. In this study, 60 STEC strains recovered from broiler and duck fecal samples, cow's milk, cattle beef, human urine, and ear discharge were screened for 12 virulence genes, phenotypic and genotypic antimicrobial resistance, and multiple-locus variable-number tandem-repeat analysis (MLVA). RESULTS: The majority of strains harbored Shiga toxin 1 (stx1) and stx1d, stx2 and stx2e, and ehxA genes, while a minority harbored stx2c subtype and eaeA. We identified 10 stx gene combinations; most of strains 31/60 (51.7%) exhibited four copies of stx genes, namely the stx1, stx1d, stx2, and stx2e, and the strains exhibited a high range of multiple antimicrobial resistance indices. The resistance genes blaCTX-M-1 and blaTEM were detected. For the oxytetracycline resistance genes, most of strains contained tetA, tetB, tetE, and tetG while the tetC was present at low frequency. MLVA genotyping resolved 26 unique genotypes; genotype 21 was highly prevalent. The six highly discriminatory loci DI = 0.9138 are suitable for the preliminary genotyping of STEC from animals and humans. CONCLUSIONS: The STEC isolated from animals are virulent, resistant to antimicrobials, and genetically diverse, thus demands greater attention for the potential risk to human.


Assuntos
Farmacorresistência Bacteriana/genética , Infecções por Escherichia coli/veterinária , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Escherichia coli Shiga Toxigênica/genética , Animais , Bovinos/microbiologia , Galinhas/microbiologia , Egito/epidemiologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/urina , Fazendeiros , Fezes/microbiologia , Genes Bacterianos , Genótipo , Humanos , Repetições Minissatélites , Sorogrupo , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...