Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 134: 107535, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32339997

RESUMO

This study reports the results of the application of microbial fuel cells (MFC) in refinery wastewater (RW) treatment. In this research, the effect of hydraulic retention time (HRT), and scale-up on the performance of a novel expandable modular design of single-chamber MFC (SCMFC) has been investigated. In the first part of the paper, the effect of HRT on chemical oxygen demand (COD) removal and electricity generation was examined. The generated steady open-circuit voltage (OCV) was 785 mV at HRT 90 h, and the provided maximum power density (PD) was 113 mW/m2 at HRT 15 h. At HRT of 45 h, COD removal increased up to 87% via an increase in the HRT. In the second part, the scale-up of SCMFC was investigated by serial (SFC) or parallel (PFC) connecting the outlets and inlets of fluid flows. The average produced OCV was 760 mV in PFC mode, and average produced PD in PFC and SFC modes were 97 and 75.6 mW/m2, respectively. COD removal in SFC and PFC modes were reported to be 89 and 42%, respectively. Compared to PFC mode, SFC mode was more efficient in terms of COD removal and coulombic efficiency. However, it produced lower PD compared to PFC mode. It is possible to control the quality and capacity of wastewater treatment by using combining the SFC and PFC mode connections in packages of MFCs.


Assuntos
Fontes de Energia Bioelétrica , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/microbiologia , Análise da Demanda Biológica de Oxigênio , Eletrodos
2.
Environ Technol ; 38(21): 2763-2774, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28033744

RESUMO

The effects of the presence of synthesized silica (SS) and exfoliated graphene oxide (EGO) on the removal of sulfide ion with activated sludge (AS) are experimentally investigated. The maximum removal efficiency of sulfide ion for AS without nanoparticles, and the samples with SS and EGO nanoparticles were 81%, 88% and 79%, respectively. Moreover, the maximum elimination capacity (ECmax) for the bioreactor with SS-nanoparticles is 7542 mg/L s, while the ECmax of AS and EGO samples were 7075 and 6625 mg/L s, respectively. Two filamentous microbial strains as Gram-negative and Gram-positive bacteria are discerned that removed sulfide ion in the presence of nanoparticles. The measurement of mixture liquor volatile suspended solid that indicates the biomass growth rate during the test shows that the bioreactor containing SS-nanoparticles has more biomass content than the other samples. Our findings indicate that SS-nanoparticles with 0.1% wt. concentration in the bioreactor have no negative effects on the efficiency of the biological removal of sulfide and the presence of SS-nanoparticles even enhances the performance of the bioreactor. On the other side, a bioreactor with EGO nanosheets, as highly antibacterial nanoparticles, with 0.02% wt. concentration significantly influences the microbial growth and reduces sulfide removal efficiency.


Assuntos
Grafite , Nanopartículas , Dióxido de Silício , Reatores Biológicos , Esgotos , Sulfetos/química , Purificação da Água
3.
Iran J Radiol ; 13(1): e18217, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27110332

RESUMO

BACKGROUND: Hemodynamics is thought to play an important role in the mechanisms responsible for initiation, growth, and rupture of intracranial aneurysms. Computational fluid dynamic (CFD) analysis is used to assess intra-aneurysmal hemodynamics. OBJECTIVES: This study aimed to investigate the effects of variations in heart rate and internal carotid artery (ICA) flow rate on intra-aneurysmal hemodynamics, in an ICA aneurysm, by using computational fluid dynamics. PATIENTS AND METHODS: Computed tomography angiography (CTA) was performed in a 55 years old female case, with a saccular ICA aneurysm, to create a patient-specific geometrical anatomic model of the aneurysm. The intra-aneurysmal hemodynamic environments for three states with different flow and heart rates were analyzed using patient-specific image-based CFD modeling. RESULTS: Results showed significant changes for the three simulated states. For a proportion of the states examined, results were counterintuitive. Systolic and time-averaged wall shear stress and pressure on the aneurysm wall showed a proportional evolution with the mainstream flow rate. CONCLUSION: Results reinforced the pivotal role of vascular geometry, with respect to hemodynamics, together with the importance of performing patient-specific CFD analyses, through which the effect of different blood flow conditions on the aneurysm hemodynamics could be evaluated.

4.
Ann Biomed Eng ; 43(1): 207-21, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25118666

RESUMO

Hemodynamics is a risk factor in intracranial aneurysms (IA). Hypertension and pharmacologically induced hypotension are common in IA patients. This study investigates how hypertension and hypotension may influence aneurysmal hemodynamics. Images of 23 IAs at typical locations were used to build patient-specific Computational Fluid Dynamics models. The effects of hypotension and hypertension were simulated through boundary conditions by modulating the normotensive flow and pressure waveforms, in turn produced by a 1D systemic vascular model. Aneurysm location and flow pattern types were used to categorize the influence of hypotension and hypertension on relevant flow variables (velocity, pressure and wall shear stress). Results indicate that, compared to other locations, vertebrobasilar aneurysms (VBA) are more sensitive to flow changes. In VBAs, space-averaged velocity at peak systole increased by 30% in hypertension (16-21% in other locations). Flow in VBAs in hypotension decreased by 20% (10-13% in other locations). Momentum-driven hemodynamic types were also more affected by hypotension and hypertension, than shear-driven types. This study shows how patient-specific modeling can be effectively used to identify location-specific flow patterns in a clinically-relevant study, thus reinforcing the role played by modeling technologies in furthering our understanding of cardiovascular disease, and their potential in future healthcare.


Assuntos
Hemodinâmica , Hipertensão/fisiopatologia , Hipotensão/fisiopatologia , Aneurisma Intracraniano/fisiopatologia , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Adulto , Idoso , Angiografia Cerebral , Feminino , Humanos , Hidrodinâmica , Masculino , Pessoa de Meia-Idade , Estresse Mecânico , Adulto Jovem
5.
Iran J Radiol ; 12(4): e18286, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26793288

RESUMO

BACKGROUND: Understanding hemodynamic environment in vessels is important for realizing the mechanisms leading to vascular pathologies. OBJECTIVES: Three-dimensional velocity vector field in carotid bifurcation is visualized using TR 3D phase-contrast magnetic resonance imaging (TR 3D PC MRI) and computational fluid dynamics (CFD). This study aimed to present a qualitative and quantitative comparison of the velocity vector field obtained by each technique. SUBJECTS AND METHODS: MR imaging was performed on a 30-year old male normal subject. TR 3D PC MRI was performed on a 3 T scanner to measure velocity in carotid bifurcation. 3D anatomical model for CFD was created using images obtained from time-of-flight MR angiography. Velocity vector field in carotid bifurcation was predicted using CFD and PC MRI techniques. A statistical analysis was performed to assess the agreement between the two methods. RESULTS: Although the main flow patterns were the same for the both techniques, CFD showed a greater resolution in mapping the secondary and circulating flows. Overall root mean square (RMS) errors for all the corresponding data points in PC MRI and CFD were 14.27% in peak systole and 12.91% in end diastole relative to maximum velocity measured at each cardiac phase. Bland-Altman plots showed a very good agreement between the two techniques. However, this study was not aimed to validate any of methods, instead, the consistency was assessed to accentuate the similarities and differences between Time-resolved PC MRI and CFD. CONCLUSION: Both techniques provided quantitatively consistent results of in vivo velocity vector fields in right internal carotid artery (RCA). PC MRI represented a good estimation of main flow patterns inside the vasculature, which seems to be acceptable for clinical use. However, limitations of each technique should be considered while interpreting results.

6.
Bioresour Technol ; 146: 247-253, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23941707

RESUMO

In this study, for the first time, the conduction-based model is extended, and then combined with Genetic Algorithm to estimate the design parameters of a MFC treating dairy wastewater. The optimized parameters are, then, validated. The estimated half-saturation potential of -0.13 V (vs. SHE) is in good agreement while the biofilm conductivity of 8.76×10(-4) mS cm(-1) is three orders of magnitude lower than that previously-reported for pure-culture biofilm. Simulations show that the ohmic and concentration overpotentials contribute almost equally in dropping cell voltage in which the concentration film and biofilm conductivity comprise the main resistances, respectively. Thus, polarization analysis and determining the controlling steps will be possible through that developed extension. This study introduces a reliable method to estimate the design parameters of a particular MFC and to characterize it.


Assuntos
Fontes de Energia Bioelétrica , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Algoritmos , Biofilmes , Biomassa , Indústria de Laticínios , Condutividade Elétrica , Eletricidade , Eletrodos , Reprodutibilidade dos Testes , Esgotos , Águas Residuárias , Poluentes da Água
7.
Biosens Bioelectron ; 38(1): 264-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22748963

RESUMO

This study reports on the fabrication of a novel annular single chamber microbial fuel cell (ASCMFC) with spiral anode. The stainless steel mesh anode with graphite coating was used as anode. Dairy wastewater, containing complex organic matter, was used as substrate. ASCMFC had been operated for 450 h and results indicated a high open circuit voltage (about 810 mV) compared with previously published results. The maximum power density of 20.2 W/m(3) obtained in this study is significantly greater than the power densities reported in previous studies. Besides, a maximum coulombic efficiency of 26.87% with 91% COD removal was achieved. Good bacterial adhesion on the spiral anode is clearly shown in SEM micrographs. High power density and a successful performance in wastewater treatment in ASCMFC suggest it as a promising alternative to conventional MFCs for power generation and wastewater treatment. ASCMFC performance as a power generator was characterized based on polarization behavior and cell potentials.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Águas Residuárias/análise , Purificação da Água/instrumentação , Eletrodos , Desenho de Equipamento , Aço Inoxidável/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...