Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(W1): W331-W337, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37167010

RESUMO

The mpox virus (MPXV) is mutating at an exceptional rate for a DNA virus and its global spread is concerning, making genomic surveillance a necessity. With MpoxRadar, we provide an interactive dashboard to track virus variants on mutation level worldwide. MpoxRadar allows users to select among different genomes as reference for comparison. The occurrence of mutation profiles based on the selected reference is indicated on an interactive world map that shows the respective geographic sampling site in customizable time ranges to easily follow the frequency or trend of defined mutations. Furthermore, the user can filter for specific mutations, genes, countries, genome types, and sequencing protocols and download the filtered data directly from MpoxRadar. On the server, we automatically download all MPXV genomes and metadata from the National Center for Biotechnology Information (NCBI) on a daily basis, align them to the different reference genomes, generate mutation profiles, which are stored and linked to the available metainformation in a database. This makes MpoxRadar a practical tool for the genomic survaillance of MPXV, supporting users with limited computational resources. MpoxRadar is open-source and freely accessible at https://MpoxRadar.net.


Assuntos
Genoma Viral , Genômica , Monkeypox virus , Software , Bases de Dados Factuais , Monkeypox virus/genética
2.
Bioinformatics ; 38(Suppl_2): ii168-ii174, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36124807

RESUMO

BACKGROUND: Emerging pathogens are a growing threat, but large data collections and approaches for predicting the risk associated with novel agents are limited to bacteria and viruses. Pathogenic fungi, which also pose a constant threat to public health, remain understudied. Relevant data remain comparatively scarce and scattered among many different sources, hindering the development of sequencing-based detection workflows for novel fungal pathogens. No prediction method working for agents across all three groups is available, even though the cause of an infection is often difficult to identify from symptoms alone. RESULTS: We present a curated collection of fungal host range data, comprising records on human, animal and plant pathogens, as well as other plant-associated fungi, linked to publicly available genomes. We show that it can be used to predict the pathogenic potential of novel fungal species directly from DNA sequences with either sequence homology or deep learning. We develop learned, numerical representations of the collected genomes and visualize the landscape of fungal pathogenicity. Finally, we train multi-class models predicting if next-generation sequencing reads originate from novel fungal, bacterial or viral threats. CONCLUSIONS: The neural networks trained using our data collection enable accurate detection of novel fungal pathogens. A curated set of over 1400 genomes with host and pathogenicity metadata supports training of machine-learning models and sequence comparison, not limited to the pathogen detection task. AVAILABILITY AND IMPLEMENTATION: The data, models and code are hosted at https://zenodo.org/record/5846345, https://zenodo.org/record/5711877 and https://gitlab.com/dacs-hpi/deepac. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
DNA , Fungos , Animais , Bactérias/genética , Coleta de Dados , Fungos/genética , Humanos , Aprendizado de Máquina , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...