Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Sep Sci ; 47(18): e2400296, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39276082

RESUMO

A simple and quick fiber-in-tube solid-phase microextraction (FIT-SPME) was introduced for the extraction and determination of nine polycyclic aromatic hydrocarbons followed by a high-performance liquid chromatography-ultraviolet detector in refinery water samples. For this purpose, a water-resistant metal-organic framework with a high surface area called UiO-66 has been applied in the form of an electrospun coating on stainless steel wires. After that, all the fibers were packed in the lumen of a stainless-steel tube to make the extraction phase. Both one variable at a time and experimental design methods have been used to optimize effective parameters on FIT-SPME. Under optimum conditions, the method demonstrated good linearity between 0.5 and 1000.0 µg/L with a coefficient of determination greater than 0.9906. Furthermore, the limits of detection values ranged from 0.2 to 1.5 µg/L. The intra-day and inter-day relative standard deviations were < 8.4% and < 9.7%, respectively. Lastly, the proposed method was applied to extract and determine analytes in four refinery water samples as well as surface water containing high total dissolved solids, and well waters where satisfactory results have been obtained.

2.
J Sep Sci ; 46(22): e2300421, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37688348

RESUMO

In the present work, a novel solid-phase microextraction on a screw (MES) was employed to extract cationic dyes (malachite green, methylene blue, and rhodamine B) from food samples and fish breeding pool water. The sulfonated poly(styrene-co-divinylbenzene) was electrophoretically deposited on the surface of the grooves of a screw. Then the screw was placed inside a silicon tube as a holder to create a channel to run a test solution through it. The extracted dyes on the coated screw were eluted by a suitable eluent. High-performance liquid chromatography with an ultraviolet/visible detector was utilized for the separation and analysis of the analytes. The effective parameters of the analyte extraction efficiency were optimized. Under optimum conditions, the limits of detection were 0.15 µg/L, and calibration curves were linear in the range of 0.50-250.00 µg/L, with coefficients of determination > 0.989 for all studied dyes. The relative standard deviations of intra and inter-day (n = 3) were in the range of 2.8%-7.0% and 7.0%-9.5%, respectively. The MES was applied as a simple and repeatable method with acceptable relative recoveries (82.0%-103.0%) for the determination of cationic dyes in grape nectar, ice pop, jelly powder, and fish breeding pool water.

3.
J Sep Sci ; 46(14): e2300132, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37232223

RESUMO

In this research, a green approach for dispersive solid phase microextraction was introduced for the extraction and determination of melamine in various matrices such as infant formula and hot water in a melamine bowl. In this way, a natural polar polymer called ß-cyclodextrin has been cross-linked with citric acid to create a water-insoluble adsorbent. The extraction was carried out by dispersion of the sorbent into the sample solution. The effective parameters on the extraction efficiency of the melamine, including ion strength, extraction time, sample volume, amount of absorbent, pH, type of desorption solvent, desorption time, and desorption solvent volume were optimized by one variable at a time approach. Under the optimal conditions, the method showed a good linear dynamic range for melamine in the range of 1-1000 µg/L with a coefficient of determination of 0.9985. The obtained limit of detection was 0.3 µg/L. The intra-day and inter-day relative standard deviations (n = 3) were 3.1% and 3.2% respectively. Lastly, this technique was applied to extract and determine the analyte in a melamine bowl and infant formula with acceptable and satisfactory results.

4.
J Sep Sci ; 44(6): 1122-1129, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32627394

RESUMO

This research is an application of fiber-in-tube solid-phase microextraction followed by high-performance liquid chromatography with UV detection for the extraction and determination of trace amounts of bisphenol A. Nanomagnetic Fe3 O4 was formed on the surface of polypropylene porous hollow fibers to increase the surface area and then it was coated with polystyrene. The introduction of polystyrene improves the surface hydrophobicity and is an appropriate extractive phase because it is highly stable in aquatic media. The extraction was carried out in a short capillary packed longitudinally with the fine fibers as the extraction medium. Extraction conditions, including extraction and desorption flow rates, extraction time, pH, and ionic strength of the sample solution, were investigated and optimized. Under optimal conditions, the limit of detection was 0.01 µg/L. This method showed good linearity for bisphenol A in the range of 0.033-1000 µg/L, with the coefficient of determination of 0.9984. The inter- and intraday precisions (RSD%, n = 3) were 7.9 and 6.3%, respectively. Finally, the method was applied to analysis of the analyte in thermal papers, disposable plastic cups, and soft drink bottles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA