Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(17): 21324-21332, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37071042

RESUMO

Perylene diimide with ammonium oxide as a terminal group (named PDIN-O) is a well-known cathode interlayer in conventional-type organic solar cells (OSCs). Since naphthalene diimide exhibits a lower LUMO level than perylene diimide, we chose it as a core to further control the LUMO level of the materials. Small molecules (SMs) produce a beneficial interfacial dipole by the end of ionic functionality at the side chain of naphthalene diimide. With the active layer based on a nonfullerene acceptor (PM6:Y6BO), the power conversion efficiency (PCE) is enhanced by utilizing SMs as cathode interlayers. We discovered that the inverted-type OSC with naphthalene diimide with oxide as a counteranion (NDIN-O) shows poor thermal stability, which can cause irreversible damage to the interlayer-cathode contact, leading to poor PCE (11.1%). To overcome the disadvantage, we introduce NDIN-Br and NDIN-I with a higher decomposition temperature. An excellent PCE of 14.6% was achieved with the device based on NDIN-Br as an interlayer, which is almost the same as the PCE of the ZnO-based device (15.0%). The device based on NDIN-I without the ZnO layer exhibits an improved PCE of 15.4%, which is slightly higher than the ZnO-based device. The result offers a replacement of the ZnO interlayer, which is necessary to carefully manage the sol-gel transition by annealing temperatures as high as 200 °C and leading to low-cost manufacture of OSCs.

2.
Int J Mol Sci ; 25(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38203694

RESUMO

We synthesized novel polyelectrolytes based on naphthalene diimide with quaternary amine featuring hydroxyl groups at the side chain, along with different counteranions (PF-NDIN-Br-OH and PF-NDIN-I-OH) for polymer solar cell (PSC) application as the interlayer. The polyelectrolytes establish a beneficial interface dipole through the ionic moieties and synergistic effects arising from the hydroxyl groups located at the side chain. Incorporating polyelectrolytes as the cathode interlayer resulted in an enhancement of the power conversion efficiency (PCE). The PCE of the device with PF-NDIN-Br-OH increased from 8.96% to 9.51% compared to the ZnO-only device. The best PCE was obtained with the device based on PF-NDIN-I-OH, up to 9.59% resulting from the Jsc enhancement. This outcome implies a correlation between the performance of the device and the synergistic effects observed in polyelectrolytes containing hydroxyl groups in the side chain, along with larger anions when employed in PSCs.


Assuntos
Imidas , Naftalenos , Polímeros , Polieletrólitos , Eletrodos
3.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613965

RESUMO

A series of medium bandgap polymer donors, named poly(1-(5-(4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo [1,2-b:4,5-b']dithiophen-2-yl)thiophen-2-yl)-5-((4,5-dihexylthiophen-2-yl)methylene)-3-(thiophen-2-yl)-4H-cyclopenta[c]thiophene-4,6(5H)-dione) (IND-T-BDTF), poly(1-(5-(4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo [1,2-b:4,5-b']dithiophen-2-yl)-4-hexylthiophen-2-yl)-5-((4,5-dihexylthiophen-2-yl)methylene)-3-(4-hexylthiophen-2-yl)-4H-cyclopenta[c]thiophene-4,6(5H)-dione (IND-HT-BDTF), and poly(1-(5-(4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo [1,2-b:4,5-b']dithiophen-2-yl)-6-octylthieno [3,2-b]thiophen-2-yl)-5-((4,5-dihexylthiophen-2-yl)methylene)-3-(6-octylthieno [3,2-b]thiophen-2-yl)-4H-cyclopenta[c]thiophene-4,6(5H)-dione (IND-OTT-BDTF), are developed for non-fullerene acceptors (NFAs) polymer solar cells (PSCs). Three polymers consist of donor-acceptor building block, where the electron-donating fluorinated benzodithiophene (BDTF) unit is linked to the electron-accepting 4H-cyclopenta[c]thiophene-4,6(5H)-dione (IND) derivative via thiophene (T) or thieno [3,2-b]thiopene (TT) bridges. The absorption range of the polymer donors based on IND in this study shows 400~800 nm, which complimenting the absorption of Y6BO (600~1000 nm). The PSC's performances are also significantly impacted by the π-bridges. NFAs inverted type PSCs based on polymer donors and Y6BO acceptor are fabricated. The power conversion efficiency (PCE) of the device based on IND-OTT-BDTF reaches up to 11.69% among all polymers with a short circuit current of 26.37 mA/cm2, an open circuit voltage of 0.79 V, and a fill factor of 56.2%, respectively. This study provides fundamental information on the invention of new polymer donors for NFA-based PSCs.


Assuntos
Fulerenos , Energia Solar , Polímeros/química , Fulerenos/química , Fontes de Energia Elétrica , Tiofenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...