Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Complement Med Ther ; 23(1): 261, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481531

RESUMO

BACKGROUND: The overuse of antibiotics leads to the emergence of antibiotic-resistant microbes which causes high mortality worldwide. Therefore, the synthesis of new active compounds has multifunctional activities are the main challenge. Nanotechnology provides a solution for this issue. METHOD: The endophytic fungal strain Aspergillus terreus BR.1 was isolated from the healthy root of Allium sativum and identified using internal transcribed spacer (ITS) sequence analysis. The copper oxide nanoparticles (CuO-NPs) were synthesized by harnessing the metabolites of the endophytic fungal strain. The UV-Visble spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), Transmission electron micrscopy (TEM), Energy dispersive X-ray (EDX), X-ray diffraction (XRD), Dynamic light scattering (DLS), and zeta potential (ζ) were used for the characterization of synthesized CuO-NPs. The activity against different pathogenic bacteria and Candida species were investigated by agar well-diffusion method. The biocombatibility and anticancer activity were assessed by MTT assay method. The scavenging of DPPH was used to investigate the antioxidant activity of synthesized CuO-NPs. RESULTS: Data showed the successful formation of crystalline nature and spherical shape CuO-NPs with sizes in the ranges of 15-55 nm. The EDX reveals that the as-formed sample contains ions of C, O, Cl, and Cu with weight percentages of 18.7, 23.82, 11.31, and 46.17%, respectively. The DLS and ζ-potential showed high homogeneity and high stability of synthesized CuO-NPs with a polydispersity index (PDI) of 0.362 and ζ-value of - 26.6 mV. The synthesized CuO-NPs exhibited promising antibacterial and anti-Candida activity (concentration-dependent) with minimum inhibitory concentration (MIC) values in the ranges of 25-50 µg mL-1. Moreover, the fungal mediated-CuO-NPs targeted cancer cells of MCF7 and PC3 at low IC50 concentrations of 159.2 ± 4.5 and 116.2 ± 3.6 µg mL-1, respectively as compared to normal cells (Vero and Wi38 with IC50 value of 220.6 ± 3.7 and 229.5 ± 2.1 µg mL-1, respectively). The biosynthesized CuO-NPs showed antioxidant activity as detected by the DPPH method with scavenging percentages of 80.5 ± 1.2% at a concentration of 1000 µg mL-1 and decreased to 20.4 ± 4.2% at 1.9 µg mL-1 as compared to ascorbic acid (control) with scavenging activity of 97.3 ± 0.2 and 37.5 ± 1.3% at the same concentrations, respectively. CONCLUSION: The fungal mediated-CuO-NPs exhibited promising activity and can be integrated into various biomedical and theraputic applications.


Assuntos
Antioxidantes , Candida , Antioxidantes/farmacologia , Cobre , Espectroscopia de Infravermelho com Transformada de Fourier , Fungos , Antibacterianos/farmacologia , Óxidos
2.
Sci Rep ; 13(1): 9054, 2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270596

RESUMO

Herein, four endophytic fungal strains living in healthy roots of garlic were used to produce selenium nanoparticles (Se-NPs) via green synthesis. Penicillium verhagenii was found to be the most efficient Se-NPs producer with a ruby red color that showed maximum surface plasmon resonance at 270 nm. The as-formed Se-NPs were crystalline, spherical, and well-arranged without aggregation, and ranged from 25 to 75 nm in size with a zeta potential value of -32 mV, indicating high stability. Concentration-dependent biomedical activities of the P. verhagenii-based Se-NPs were observed, including promising antimicrobial activity against different pathogens (Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, Candida albicans, C. glabrata, C. tropicalis, and C. parapsilosis) with minimum inhibitory concentration (MIC) of 12.5-100 µg mL-1. The biosynthesized Se-NPs showed high antioxidant activity with DPPH-scavenging percentages of 86.8 ± 0.6% at a concentration of 1000 µg mL-1 and decreased to 19.3 ± 4.5% at 1.95 µg mL-1. Interestingly, the Se-NPs also showed anticancer activity against PC3 and MCF7 cell lines with IC50 of 225.7 ± 3.6 and 283.8 ± 7.5 µg mL-1, respectively while it is remaining biocompatible with normal WI38 and Vero cell lines. Additionally, the green synthesized Se-NPs were effective against instar larvae of a medical insect, Aedes albopictus with maximum mortality of 85.1 ± 3.1, 67.2 ± 1.2, 62.10 ± 1.4, and 51.0 ± 1.0% at a concentration of 50 µg mL-1 for I, II, III, and IV-instar larva, respectively. These data highlight the efficacy of endophytic fungal strains for cost-effective and eco-friendly Se-NPs synthesis with different applications.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Selênio , Humanos , Antioxidantes/metabolismo , Selênio/farmacologia , Selênio/química , Nanopartículas Metálicas/química , Anti-Infecciosos/química , Células MCF-7 , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...