Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasitology ; 141(8): 1108-22, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24813231

RESUMO

The present paper reports results of a transmission electron microscopy study of a new metchikovellid microsporidium. It was isolated from gregarines Polyrhabdina sp. inhabiting guts of polychaetes Pygospio elegans sampled at the White Sea silt littoral zone. Free sporogony (FS) occurred in the life cycle of the microsporidium alongside sac-bound sporogony (BS). Free spores resided in a parasitophorous vacuole and were of typical metchnikovellidean structure, uninucleate and oblong. They measured on sections 2·0-3·2×1·3-1·9 µm. The life cycle included pre-sporogonial stages represented by dikaryotic cells and 4-nucleate cells with coupled nuclei. A multinucleate sporogonial plasmodium of FS split in numerous (>10) sporoblasts. In BS segregation of sporoblasts occurred within thick-walled cysts by internal budding. Spore sacs of this microsporidium, measuring on average 11·6×4·7 µm, were limited by a thick electron-dense wall, externally ornamented with spirally wound cords of dense material. These oval spore sacs contained eight barrel-shaped spores, comparable in size and ultrastructure to FS spores. Ultrastructure of both types of spores and intracellular development of the new microsporidium and Metchnikovella spp. were similar, suggesting they belong to the same genus. In this paper we describe a new species Metchnikovella spiralis and discuss morphology of metchnikovellids in the context of putative evolutionary history of Microsporidia.


Assuntos
Microsporídios/classificação , Animais , Estágios do Ciclo de Vida , Microscopia Eletrônica de Transmissão , Microsporídios/crescimento & desenvolvimento , Microsporídios/isolamento & purificação , Microsporídios/ultraestrutura , Esporos Fúngicos
2.
Parasitology ; 140(7): 855-67, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23448692

RESUMO

Class Rudimicrosporea Sprague 1977, with its single family Metchnikovellidae, comprises hyperparasites of gregarines from the guts of marine invertebrates. Metchnikovellids remain poorly studied in spite of their significance to the evolutionary history of microsporidia; their ultrastructure and life cycles require further investigation. Here we present results of the light- and electron-microscopy study of Metchnikovella incurvata Caulleri and Mesnil 1914, isolated from lecudinid gregarines, parasitizing polychaetes Pygospio elegans in the White Sea littoral zone, and yet described only on the light-microscopic level. The life cycle of this microsporidium includes 2 sporogonies: free (FS) and sac-bound (SBS). In FS, sporonts develop into multinuclear cells (sporogonial plasmodia), which generate sporoblasts and free spores residing in direct contact with the host cytoplasm. Electron microscopy revealed their metchnikovellidean structure: a horseshoe-shaped nucleus, short manubrium perpendicular to the long axis of the spore, and a polar cap in a separate membrane container. Merogony was not observed. The earliest stages of SBS were chains of binucleate cells. They underwent a series of nuclear and cell divisions, produced extracellular envelopes, and split into boomerang-shaped spore sacs, containing up to 16 spores each. Ultrastructure and sizes of sac-bounded spores were similar to those of free-living ones. An amended diagnosis of M. incurvata is provided.


Assuntos
Microsporídios/ultraestrutura , Poliquetos/parasitologia , Animais , Microscopia Eletrônica , Microsporídios/classificação , Oceanos e Mares , Federação Russa , Esporos/ultraestrutura
3.
J Invertebr Pathol ; 84(3): 159-72, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14726239

RESUMO

The ultrastructure of the microsporidian parasite Nosema grylli, which parasitizes primarily fat body cells and haemocytes of the cricket Gryllus bimaculatus (Orthoptera, Gryllidae) is described. All observed stages (meront, meront/sporont transitional stage ("second meront"), sporont, sporoblast, and spore) are found in direct contact with the host cell cytoplasm. Nuclei are diplokaryotic during almost all stages of the life cycle, but a brief stage with one nucleus containing an abundance of electron-dense material is observed during a "second merogony." Sporogony is disporous. Mature spores are ovocylindrical in shape and measure 4.5+/-0.16micromx2.2+/-0.07 microm (n=10) on fresh smears and 3.3+/-0.06 micromx1.4+/-0.07 microm (n=10) on ultrathin sections. Spores contain 15-18 coils of an isofilar polar filament arranged in one or two layers. Comparative phylogenetic analysis using rDNA shows N. grylli to be closely related to another orthopteran microsporidian, Nosema locustae, and to Nosema whitei from the confused flour beetle, Tribolium confusum. Antonospora scoticae, a parasite of the communal bee Andrena scotica, is a sister taxon to these three Nosema species. The sequence divergence and morphological traits clearly separate this group of "Nosema" parasites from the "true" Nosema clade containing Nosema bombycis. We therefore propose to change the generic name of N. grylli and its close relative N. locustae to Paranosema n. comb. We leave N. whitei in former status until more data on fine morphology of the species are obtained.


Assuntos
DNA de Protozoário/análise , Gryllidae/parasitologia , Nosema/classificação , Nosema/ultraestrutura , Filogenia , Animais , Sequência de Bases , Estágios do Ciclo de Vida/fisiologia , Microscopia Eletrônica , Nosema/fisiologia , Esporos de Protozoários/fisiologia , Esporos de Protozoários/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...