Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 11(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38790280

RESUMO

This study aims to integrate a novel bio-purification process employing an engineered E. coli strain in the downstream processing of lactic acid (LA) fermentation broths from low-cost renewable biological feedstocks. Fermentation broth of candy waste and digestate mixture was used as a real biological feedstock. An engineered E. coli strain that selectively catabolize impurities without catabolizing LA was initially adapted on the biological feedstock, followed by shake flask experiments to prove the bio-purification concept. Scale-up and validation in a bench-scale bioreactor followed, before developing a semi-continuous membrane bioreactor (MBR) bio-purification process. The MBR bio-purification was assessed with biological feedstocks which simulated ultrafiltration or nanofiltration permeates. Incomplete removal of impurities and increased fouling was observed in the case of the ultrafiltration permeate. Contrarily, the nanofiltration permeate was successfully treated with MBR bio-purification, since low membrane fouling, 100% maltose and acetic acid removal, and no LA catabolism was achieved. MBR bio-purification as a post-treatment step in the downstream processing of LA was demonstrated as a promising technology for increasing the purity of LA solutions.

2.
Biotechnol Biofuels Bioprod ; 17(1): 48, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555439

RESUMO

BACKGROUND: A potential alternative to lactic acid production through sugar fermentation is its recovery from grass silage leachate. The separation and purification of lactic acid from fermentation broths remain a key issue, as it amounts to up to 80% of its industrial production cost. In this study, a genetically engineered E. coli strain (A1:ldhA), that cannot catabolize lactic acid, has been used to selectively remove impurities from a synthetic medium comprising typical components (i.e., glucose and acetic acid) of green grass silage leachate. A systematic approach has been followed to provide a proof-of-concept for a bio-purification process of lactic acid solutions in a membrane bioreactor operating in semi-continuous mode. RESULTS: The synthetic medium composition was initially optimized in shake-flasks experiments, followed by scale-up in bench-scale bioreactor. Complete (i.e., 100%) and 60.4% removal for glucose and acetic acid, respectively, has been achieved in batch bioreactor experiments with a synthetic medium comprising 0.5 g/L glucose and 0.5 g/L acetic acid as carbon sources, and 10 g/L lactic acid; no lactic acid catabolism was observed in all batch fermentation tests. Afterwards, a hybrid biotechnological process combining semi-continuous bioreactor fermentation and ultrafiltration membrane separation (membrane bioreactor) was applied to in-situ separate purified medium from the active cells. The process was assessed under different semi-continuous operating conditions, resulting in a bacteria-free effluent and 100% glucose and acetic acid depletion, with no lactic acid catabolism, thus increasing the purity of the synthetic lactic acid solution. CONCLUSIONS: The study clearly demonstrated that a bio-purification process for lactic acid employing the engineered E. coli strain cultivated in a membrane bioreactor is a technically feasible concept, paving the way for further technological advancement.

3.
Membranes (Basel) ; 12(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893443

RESUMO

Membrane processes can be integrated with fermentation for the selective separation of the products from the fermentation broth. Sterilization with saturated steam under pressure is the most widely used method; however, data concerning heat sterilization applicability to polymeric ultrafiltration (UF) membranes are scarcely available. In this study, the effect of the sterilization process on the filtration performance of a commercial polyvinylidene difluoride (PVDF) hollow fiber UF membrane was evaluated. Membrane modules were constructed and sterilized several times in an autoclave. Pure water flux tests were performed, to assess the effect of heat sterilization on the membrane's pure water permeance. Dextran rejection tests were performed for the characterization of membrane typical pore size and its fouling propensity. Filtration performance was also assessed by conducting filtration tests with real fermentation broth. After repeated sterilization cycles, pure water permeance remained quite constant, varying between approx. 830 and 990 L·m-2·h-1·bar-1, while the molecular weight cut-off (MWCO) was estimated to be in the range of 31.5-98.0 kDa. Regarding fouling behavior, the trans-membrane pressure increase rate was stable and quite low (between 0.5 and 7.0 mbar/min). The results suggest that commercial PVDF UF membranes are a viable alternative to high-cost ceramic UF membranes for fermentation processes that require heat sterilization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...