Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 103(7): 1354-65, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25385691

RESUMO

Iron-bioceramic composites have been developed as biodegradable implant materials with tailored degradation behavior and bioactive features. In the current work, in vivo bioactivity of the composites was comprehensively studied by using sheep animal model. Five groups of specimens (Fe-HA, Fe-TCP, Fe-BCP composites, and pure-Fe and SS316L as controls) were surgically implanted into medio proximal region of the radial bones. Real-time ultrasound analysis showed a decreased echo pattern at the peri-implant biodegradation site of the composites indicating minimal tissue response during the wound healing process. Peripheral whole blood biomarkers monitoring showed a normal dynamic change of blood cellular responses and no stress effect was observed. Meanwhile, the released Fe ion concentration was increasing along the implantation period. Histological analysis showed that the composites corresponded with a lower inflammatory giant cell count than that of SS316L. Analysis of the retrieved implants showed a thicker degradation layer on the composites compared with pure-Fe. It can be concluded that the iron-bioceramic composites are bioactive and induce a preferable wound healing process.


Assuntos
Substitutos Ósseos , Cerâmica , Ferro , Teste de Materiais , Animais , Substitutos Ósseos/química , Substitutos Ósseos/farmacocinética , Substitutos Ósseos/farmacologia , Cerâmica/química , Cerâmica/farmacocinética , Cerâmica/farmacologia , Ferro/química , Ferro/farmacocinética , Ferro/farmacologia , Masculino , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...