Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766012

RESUMO

Genetic variation and 3D chromatin structure have major roles in gene regulation. Due to challenges in mapping chromatin conformation with haplotype-specific resolution, the effects of genetic sequence variation on 3D genome structure and gene expression imbalance remain understudied. Here, we applied Genome Architecture Mapping (GAM) to a hybrid mouse embryonic stem cell (mESC) line with high density of single nucleotide polymorphisms (SNPs). GAM resolved haplotype-specific 3D genome structures with high sensitivity, revealing extensive allelic differences in chromatin compartments, topologically associating domains (TADs), long-range enhancer-promoter contacts, and CTCF loops. Architectural differences often coincide with allele-specific differences in gene expression, mediated by Polycomb repression. We show that histone genes are expressed with allelic imbalance in mESCs, are involved in haplotype-specific chromatin contact marked by H3K27me3, and are targets of Polycomb repression through conditional knockouts of Ezh2 or Ring1b. Our work reveals highly distinct 3D folding structures between homologous chromosomes, and highlights their intricate connections with allelic gene expression.

2.
Adv Cancer Res ; 159: 251-283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37268398

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most common (∼90% cases) pancreatic neoplasm and one of the most lethal cancer among all malignances. PDAC harbor aberrant oncogenic signaling that may result from the multiple genetic and epigenetic alterations such as the mutation in driver genes (KRAS, CDKN2A, p53), genomic amplification of regulatory genes (MYC, IGF2BP2, ROIK3), deregulation of chromatin-modifying proteins (HDAC, WDR5) among others. A key event is the formation of Pancreatic Intraepithelial Neoplasia (PanIN) that often results from the activating mutation in KRAS. Mutated KRAS can direct a variety of signaling pathways and modulate downstream targets including MYC, which play an important role in cancer progression. In this review, we discuss recent literature shedding light on the origins of PDAC from the perspective of major oncogenic signaling pathways. We highlight how MYC directly and indirectly, with cooperation with KRAS, affect epigenetic reprogramming and metastasis. Additionally, we summarize the recent findings from single cell genomic approaches that highlight heterogeneity in PDAC and tumor microenvironment, and provide molecular avenues for PDAC treatment in the future.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Transdução de Sinais , Mutação , Microambiente Tumoral , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pancreáticas
3.
Sci Adv ; 9(14): eadd5745, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37027470

RESUMO

The specialized cell types of the mucociliary epithelium (MCE) lining the respiratory tract enable continuous airway clearing, with its defects leading to chronic respiratory diseases. The molecular mechanisms driving cell fate acquisition and temporal specialization during mucociliary epithelial development remain largely unknown. Here, we profile the developing Xenopus MCE from pluripotent to mature stages by single-cell transcriptomics, identifying multipotent early epithelial progenitors that execute multilineage cues before specializing into late-stage ionocytes and goblet and basal cells. Combining in silico lineage inference, in situ hybridization, and single-cell multiplexed RNA imaging, we capture the initial bifurcation into early epithelial and multiciliated progenitors and chart cell type emergence and fate progression into specialized cell types. Comparative analysis of nine airway atlases reveals an evolutionary conserved transcriptional module in ciliated cells, whereas secretory and basal types execute distinct function-specific programs across vertebrates. We uncover a continuous nonhierarchical model of MCE development alongside a data resource for understanding respiratory biology.


Assuntos
Células Epiteliais , Animais , Xenopus laevis , Epitélio/metabolismo , Células Epiteliais/metabolismo , Diferenciação Celular/genética
4.
Genome Res ; 33(2): 218-231, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36653120

RESUMO

The true benefits of large single-cell transcriptome and epigenome data sets can be realized only with the development of new approaches and search tools for annotating individual cells. Matching a single-cell epigenome profile to a large pool of reference cells remains a major challenge. Here, we present scEpiSearch, which enables searching, comparison, and independent classification of single-cell open-chromatin profiles against a large reference of single-cell expression and open-chromatin data sets. Across performance benchmarks, scEpiSearch outperformed multiple methods in accuracy of search and low-dimensional coembedding of single-cell profiles, irrespective of platforms and species. Here we also demonstrate the unconventional utilities of scEpiSearch by applying it on single-cell epigenome profiles of K562 cells and samples from patients with acute leukaemia to reveal different aspects of their heterogeneity, multipotent behavior, and dedifferentiated states. Applying scEpiSearch on our single-cell open-chromatin profiles from embryonic stem cells (ESCs), we identified ESC subpopulations with more activity and poising for endoplasmic reticulum stress and unfolded protein response. Thus, scEpiSearch solves the nontrivial problem of amalgamating information from a large pool of single cells to identify and study the regulatory states of cells using their single-cell epigenomes.


Assuntos
Cromatina , Transcriptoma , Humanos , Cromatina/metabolismo , Epigenoma , Células-Tronco Embrionárias/metabolismo , Análise de Célula Única
5.
Nat Commun ; 13(1): 7090, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402763

RESUMO

Peroxisome proliferator-activated receptor γ (PPARγ) is the master regulator of adipocyte differentiation, and mutations that interfere with its function cause lipodystrophy. PPARγ is a highly modular protein, and structural studies indicate that PPARγ domains engage in several intra- and inter-molecular interactions. How these interactions modulate PPARγ's ability to activate target genes in a cellular context is currently poorly understood. Here we take advantage of two previously uncharacterized lipodystrophy mutations, R212Q and E379K, that are predicted to interfere with the interaction of the hinge of PPARγ with DNA and with the interaction of PPARγ ligand binding domain (LBD) with the DNA-binding domain (DBD) of the retinoid X receptor, respectively. Using biochemical and genome-wide approaches we show that these mutations impair PPARγ function on an overlapping subset of target enhancers. The hinge region-DNA interaction appears mostly important for binding and remodelling of target enhancers in inaccessible chromatin, whereas the PPARγ-LBD:RXR-DBD interface stabilizes the PPARγ:RXR:DNA ternary complex. Our data demonstrate how in-depth analyses of lipodystrophy mutants can unravel molecular mechanisms of PPARγ function.


Assuntos
Lipodistrofia , PPAR gama , Humanos , PPAR gama/genética , PPAR gama/metabolismo , Adipócitos/metabolismo , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo , Lipodistrofia/metabolismo , Sequências Reguladoras de Ácido Nucleico
6.
Cancer Res ; 82(24): 4487-4496, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36214625

RESUMO

The majority of human cancers evolve over time through the stepwise accumulation of somatic mutations followed by clonal selection akin to Darwinian evolution. However, the in-depth mechanisms that govern clonal dynamics and selection remain elusive, particularly during the earliest stages of tissue transformation. Cell competition (CC), often referred to as 'survival of the fittest' at the cellular level, results in the elimination of less fit cells by their more fit neighbors supporting optimal organism health and function. Alternatively, CC may allow an uncontrolled expansion of super-fit cancer cells to outcompete their less fit neighbors thereby fueling tumorigenesis. Recent research discussed herein highlights the various non-cell-autonomous principles, including interclonal competition and cancer microenvironment competition supporting the ability of a tumor to progress from the initial stages to tissue colonization. In addition, we extend current insights from CC-mediated clonal interactions and selection in normal tissues to better comprehend those factors that contribute to cancer development.


Assuntos
Competição entre as Células , Neoplasias , Humanos , Competição entre as Células/genética , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Neoplasias/genética , Neoplasias/patologia , Microambiente Tumoral , Mutação
7.
Life Sci Alliance ; 3(11)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32958603

RESUMO

Recent single-cell RNA-sequencing atlases have surveyed and identified major cell types across different mouse tissues. Here, we computationally reconstruct gene regulatory networks from three major mouse cell atlases to capture functional regulators critical for cell identity, while accounting for a variety of technical differences, including sampled tissues, sequencing depth, and author assigned cell type labels. Extracting the regulatory crosstalk from mouse atlases, we identify and distinguish global regulons active in multiple cell types from specialised cell type-specific regulons. We demonstrate that regulon activities accurately distinguish individual cell types, despite differences between individual atlases. We generate an integrated network that further uncovers regulon modules with coordinated activities critical for cell types, and validate modules using available experimental data. Inferring regulatory networks during myeloid differentiation from wild-type and Irf8 KO cells, we uncover functional contribution of Irf8 regulon activity and composition towards monocyte lineage. Our analysis provides an avenue to further extract and integrate the regulatory crosstalk from single-cell expression data.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiologia , Animais , Fenômenos Fisiológicos Celulares , Bases de Dados Factuais , Bases de Dados Genéticas , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/fisiologia , Camundongos , Regulon/genética , Regulon/fisiologia , Análise de Sequência de RNA/métodos , Fatores de Transcrição/genética
9.
Nat Commun ; 11(1): 810, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041960

RESUMO

Recent developments in stem cell biology have enabled the study of cell fate decisions in early human development that are impossible to study in vivo. However, understanding how development varies across individuals and, in particular, the influence of common genetic variants during this process has not been characterised. Here, we exploit human iPS cell lines from 125 donors, a pooled experimental design, and single-cell RNA-sequencing to study population variation of endoderm differentiation. We identify molecular markers that are predictive of differentiation efficiency of individual lines, and utilise heterogeneity in the genetic background across individuals to map hundreds of expression quantitative trait loci that influence expression dynamically during differentiation and across cellular contexts.


Assuntos
Diferenciação Celular/genética , Expressão Gênica/genética , Células-Tronco Pluripotentes Induzidas/citologia , Linhagem Celular , Endoderma/citologia , Feminino , Perfilação da Expressão Gênica , Interação Gene-Ambiente , Estudos de Associação Genética , Heterogeneidade Genética , Humanos , Masculino , Locos de Características Quantitativas , Análise de Célula Única
10.
Methods Mol Biol ; 1979: 133-153, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31028636

RESUMO

Single-cell RNA sequencing (scRNA-seq) has become an established approach to profile entire transcriptomes of individual cells from different cell types, tissues, species, and organisms. Single-cell tagged reverse transcription sequencing (STRT-seq) is one of the early single-cell methods which utilize 5' tag counting of transcripts. STRT-seq performed on microfluidics Fluidigm C1 platform (STRT-C1) is a flexible scRNA-seq approach that allows for accurate, sensitive and importantly molecular counting of transcripts at single-cell level. Herein, I describe the STRT-C1 method and the steps involved in capturing 96 cells across C1 microfluidics chip, cDNA synthesis, and preparing single-cell libraries for Illumina short-read sequencing.


Assuntos
Dispositivos Lab-On-A-Chip , RNA/genética , Transcrição Reversa , Análise de Sequência de RNA/instrumentação , Análise de Célula Única/instrumentação , Animais , Sequência de Bases , DNA Complementar/genética , Perfilação da Expressão Gênica/instrumentação , Perfilação da Expressão Gênica/métodos , Biblioteca Gênica , Humanos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Transcriptoma
11.
Genome Biol ; 20(1): 70, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30961669

RESUMO

Single-cell RNA-seq technologies require library preparation prior to sequencing. Here, we present the first report to compare the cheaper BGISEQ-500 platform to the Illumina HiSeq platform for scRNA-seq. We generate a resource of 468 single cells and 1297 matched single cDNA samples, performing SMARTer and Smart-seq2 protocols on two cell lines with RNA spike-ins. We sequence these libraries on both platforms using single- and paired-end reads. The platforms have comparable sensitivity and accuracy in terms of quantification of gene expression, and low technical variability. Our study provides a standardized scRNA-seq resource to benchmark new scRNA-seq library preparation protocols and sequencing platforms.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA , Análise de Célula Única , Animais , Humanos , Células K562 , Camundongos
12.
Nat Commun ; 9(1): 5345, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30559361

RESUMO

The assay for transposase-accessible chromatin using sequencing (ATAC-seq) is widely used to identify regulatory regions throughout the genome. However, very few studies have been performed at the single cell level (scATAC-seq) due to technical challenges. Here we developed a simple and robust plate-based scATAC-seq method, combining upfront bulk Tn5 tagging with single-nuclei sorting. We demonstrate that our method works robustly across various systems, including fresh and cryopreserved cells from primary tissues. By profiling over 3000 splenocytes, we identify distinct immune cell types and reveal cell type-specific regulatory regions and related transcription factors.


Assuntos
Cromatina/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Análise de Célula Única/métodos , Transposases/metabolismo , Células 3T3 , Animais , Linhagem Celular , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Baço/citologia , Fatores de Transcrição/metabolismo
13.
Life Sci Alliance ; 1(4): e201800124, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30456373

RESUMO

Eukaryotic genomes produce RNAs lacking protein-coding potential, with enigmatic roles. We integrated three approaches to study large intervening noncoding RNA (lincRNA) gene functions. First, we profiled mouse embryonic stem cells and neural precursor cells at single-cell resolution, revealing lincRNAs expressed in specific cell types, cell subpopulations, or cell cycle stages. Second, we assembled a transcriptome-wide atlas of nuclear lincRNA degradation by identifying targets of the exosome cofactor Mtr4. Third, we developed a reversible depletion system to separate the role of a lincRNA gene from that of its RNA. Our approach distinguished lincRNA loci functioning in trans from those modulating local gene expression. Some genes express stable and/or abundant lincRNAs in single cells, but many prematurely terminate transcription and produce lincRNAs rapidly degraded by the nuclear exosome. This suggests that besides RNA-dependent functions, lincRNA loci act as DNA elements or through transcription. Our integrative approach helps distinguish these mechanisms.

14.
Curr Opin Genet Dev ; 46: 66-76, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28675884

RESUMO

Single-cell transcriptomics serves as a powerful tool to identify cell states within populations of cells, and to dissect underlying heterogeneity at high resolution. Single-cell transcriptomics on pluripotent stem cells has provided new insights into cellular variation, subpopulation structures and the interplay of cell cycle with pluripotency. The single-cell perspective has helped to better understand gene regulation and regulatory networks during exit from pluripotency, cell-fate determination as well as molecular mechanisms driving cellular reprogramming of somatic cells to induced pluripotent stage. Here we review the recent progress and significant findings from application of single-cell technologies on pluripotent stem cells along with a brief outlook on new combinatorial single-cell approaches that further unravel pluripotent stem cell states.


Assuntos
Diferenciação Celular/genética , Reprogramação Celular/genética , Células-Tronco Pluripotentes/metabolismo , Análise de Célula Única/métodos , Animais , Regulação da Expressão Gênica no Desenvolvimento , Humanos
15.
Nat Commun ; 8(1): 36, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28652613

RESUMO

Polycomb repressive complexes (PRCs) are important histone modifiers, which silence gene expression; yet, there exists a subset of PRC-bound genes actively transcribed by RNA polymerase II (RNAPII). It is likely that the role of Polycomb repressive complex is to dampen expression of these PRC-active genes. However, it is unclear how this flipping between chromatin states alters the kinetics of transcription. Here, we integrate histone modifications and RNAPII states derived from bulk ChIP-seq data with single-cell RNA-sequencing data. We find that Polycomb repressive complex-active genes have greater cell-to-cell variation in expression than active genes, and these results are validated by knockout experiments. We also show that PRC-active genes are clustered on chromosomes in both two and three dimensions, and interactions with active enhancers promote a stabilization of gene expression noise. These findings provide new insights into how chromatin regulation modulates stochastic gene expression and transcriptional bursting, with implications for regulation of pluripotency and development.Polycomb repressive complexes modify histones but it is unclear how changes in chromatin states alter kinetics of transcription. Here, the authors use single-cell RNAseq and ChIPseq to find that actively transcribed genes with Polycomb marks have greater cell-to-cell variation in expression.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteínas do Grupo Polycomb/metabolismo , Transcrição Gênica , Animais , Sequência de Bases , Linhagem Celular Tumoral , Marcadores Genéticos , Camundongos , Camundongos Knockout , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas do Grupo Polycomb/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
16.
Nat Methods ; 14(4): 381-387, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28263961

RESUMO

Single-cell RNA sequencing (scRNA-seq) has become an established and powerful method to investigate transcriptomic cell-to-cell variation, thereby revealing new cell types and providing insights into developmental processes and transcriptional stochasticity. A key question is how the variety of available protocols compare in terms of their ability to detect and accurately quantify gene expression. Here, we assessed the protocol sensitivity and accuracy of many published data sets, on the basis of spike-in standards and uniform data processing. For our workflow, we developed a flexible tool for counting the number of unique molecular identifiers (https://github.com/vals/umis/). We compared 15 protocols computationally and 4 protocols experimentally for batch-matched cell populations, in addition to investigating the effects of spike-in molecular degradation. Our analysis provides an integrated framework for comparing scRNA-seq protocols.


Assuntos
Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Células-Tronco Embrionárias/fisiologia , Congelamento , Camundongos , Poli A , RNA Mensageiro , Sensibilidade e Especificidade , Análise de Sequência de RNA/normas , Análise de Sequência de RNA/estatística & dados numéricos , Análise de Célula Única/normas , Análise de Célula Única/estatística & dados numéricos , Fluxo de Trabalho
18.
Genome Biol ; 17: 103, 2016 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-27176874

RESUMO

BACKGROUND: Differentiation of lymphocytes is frequently accompanied by cell cycle changes, interplay that is of central importance for immunity but is still incompletely understood. Here, we interrogate and quantitatively model how proliferation is linked to differentiation in CD4+ T cells. RESULTS: We perform ex vivo single-cell RNA-sequencing of CD4+ T cells during a mouse model of infection that elicits a type 2 immune response and infer that the differentiated, cytokine-producing cells cycle faster than early activated precursor cells. To dissect this phenomenon quantitatively, we determine expression profiles across consecutive generations of differentiated and undifferentiated cells during Th2 polarization in vitro. We predict three discrete cell states, which we verify by single-cell quantitative PCR. Based on these three states, we extract rates of death, division and differentiation with a branching state Markov model to describe the cell population dynamics. From this multi-scale modelling, we infer a significant acceleration in proliferation from the intermediate activated cell state to the mature cytokine-secreting effector state. We confirm this acceleration both by live imaging of single Th2 cells and in an ex vivo Th1 malaria model by single-cell RNA-sequencing. CONCLUSION: The link between cytokine secretion and proliferation rate holds both in Th1 and Th2 cells in vivo and in vitro, indicating that this is likely a general phenomenon in adaptive immunity.


Assuntos
Linfócitos T CD4-Positivos/citologia , Diferenciação Celular , Proliferação de Células , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/fisiologia , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Feminino , Malária/genética , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Transcriptoma
19.
Nucleic Acids Res ; 43(Database issue): D542-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25414348

RESUMO

BioModels (http://www.ebi.ac.uk/biomodels/) is a repository of mathematical models of biological processes. A large set of models is curated to verify both correspondence to the biological process that the model seeks to represent, and reproducibility of the simulation results as described in the corresponding peer-reviewed publication. Many models submitted to the database are annotated, cross-referencing its components to external resources such as database records, and terms from controlled vocabularies and ontologies. BioModels comprises two main branches: one is composed of models derived from literature, while the second is generated through automated processes. BioModels currently hosts over 1200 models derived directly from the literature, as well as in excess of 140,000 models automatically generated from pathway resources. This represents an approximate 60-fold growth for literature-based model numbers alone, since BioModels' first release a decade ago. This article describes updates to the resource over this period, which include changes to the user interface, the annotation profiles of models in the curation pipeline, major infrastructure changes, ability to perform online simulations and the availability of model content in Linked Data form. We also outline planned improvements to cope with a diverse array of new challenges.


Assuntos
Bases de Dados Factuais , Modelos Biológicos , Simulação por Computador , Internet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...