Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomedicine ; 40: 102487, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34740869

RESUMO

Induced pluripotent stem cells (iPSCs) are a promising cell source for regenerative medicine. However, their feeder-free maintenance in undifferentiated states remains challenging. In recent past extensive studies have been directed using pristine or functionalized carbon nanotube in tissue engineering. Here we proposed thin films of functionalized carbon nanotubes (OH-single-walled CNTs [SWCNTs] and OH-multiwalled CNTs [MWCNTs]), as alternatives for the feeder-free in vitro culture of canine iPSCs (ciPSCs), considered as the cellular model. The ciPSC colonies could maintain their dome-shaped compactness and other characteristics when propagated on CNT films. Concomitantly, high cell viability and upregulation of pluripotency-associated genes and cell adhesion molecules were observed, further supported by molecular docking. Moreover, CNTs did not have profound toxic effects compared to feeder cultures as evident by cytocompatibility studies. Further, cardiac and neuronal differentiation of ciPSCs was induced on these films to determine their influence on the differentiation process. The cells retained differentiation potential and the nanotopographical features of the substrates provided positive cues to enhance differentiation to both lineages as evident by immunocytochemical staining and marker gene expression. Overall, OH-SWCNT provided better cues, maintained pluripotency, and induced the differentiation of ciPSCs. These results indicate that OH-functionalized CNT films could be used as alternatives for the feeder-free maintenance of ciPSCs towards prospective utilization in regenerative medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Nanotubos de Carbono , Animais , Diferenciação Celular/fisiologia , Cães , Simulação de Acoplamento Molecular , Nanotubos de Carbono/química , Estudos Prospectivos
2.
Mol Biochem Parasitol ; 246: 111426, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34666104

RESUMO

Brugia malayi asparaginyl-tRNA synthetase (BmAsnRS) has been identified as an immunodominant antigen and a physiocrine that mimics Interleukin-8 (IL-8) to induce chemotaxis and angiogenesis in endothelial cells. Computational analyses have shown that the N-terminal region of BmAsnRS has a novel fold, a lysine rich ß-hairpin α-helix, (FLIRTKKDGKQIWE) which is similar to that present in IL-8 chemokine, CXCR1. This novel fold is involved in tRNA binding and is integral for the manifestation of the disease, lymphatic filariasis (LF). Drug discovery programmes carried out so far for LF have not been successful because of the target (BmAsnRS) resistance due to the disease-associated mutation. Mutations in AARS targets have been shown to correlate with several diseases. However, no disease-associated mutational studies have been carried out for LF. BmAsnRS has been an established target for LF. It was proposed, therefore, to study the effect of single point mutations in BmAsnRS so as to elucidate the molecular target. An understanding of the molecular consequences of mutations will provide insight into how resistance develops in addition to the identification of the likely resistance-conferring mutations. Three mutants were, therefore, generated by site-directed mutagenesis using CUPSAT server and their angiogenic properties evaluated. Cytometric analysis of the mutants on endothelial cell cycle was also carried out. CUPSAT prediction of protein stability upon point mutations reveal that two mutants generated are likely resistance-conferring mutations. All the three mutants show significant reduction in their angiogenic properties and reduction in the DNA content in the cells of S and G2/M phases thus showing altered function of the gene encoding the drug target. The resistance- conferring mutants, however, show angiogenic properties nearer to the wild type protein, BmAsnRS. Future work on designing newer drugs may take into consideration these drug resistance-conferring mutations.


Assuntos
Brugia Malayi , Filariose Linfática , Animais , Aspartato-tRNA Ligase , Brugia Malayi/genética , Desenvolvimento de Medicamentos , Filariose Linfática/tratamento farmacológico , Células Endoteliais , Interleucina-8/farmacologia , Aminoacil-RNA de Transferência
3.
Tissue Cell ; 71: 101571, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34139604

RESUMO

Induced pluripotent stem cells (iPSCs) have attracted an interest for personalized cell based therapy along with various other applications. There have been few studies that effective nanomaterial based scaffolds act as alternative to the commonly used feeder dependent in vitro maintenance of iPSCs. The present study provides the fundamental information on ex vivo behavior of canine iPSC (ciPSCs) maintained on carboxylic acid (COOH) functionalized single-walled carbon nanotubes (COOH-SWCNTs) and multi-walled carbon nanotubes (COOH-MWCNTs) substrates. Here in we evaluated the comparative colony morphology, propagation, characterization, cytocompatibility and differentiation capability of ciPSC cultured on MEF feeder taken as control, and COOH-SWCNTs and COOH-MWCNTs substrates. We observed a healthy growth of ciPSCs on both the types of carbon nanotubes (CNTs) similar to feeder. The ciPSC colonies grown on both CNTs were positive for alkaline phosphatase staining and expressed pluripotent markers with notable significance. Further, the ciPSC colonies grew on these CNTs retained the in vitro differentiation ability into three germ layers as well as cardiac cell. Cytotoxicity analysis revealed that (COOH) functionalized CNTs provided a culture condition of low cytotoxicity. The results of the present study indicated that (COOH) functionalized CNTs could be used as xeno-free substrate to support the maintenance of iPSCs.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Teste de Materiais , Miócitos Cardíacos/metabolismo , Nanotubos de Carbono/química , Animais , Cães , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia
4.
Lymphat Res Biol ; 17(4): 447-456, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30570354

RESUMO

Background: Lymphatic filariasis (LF) is a global health problem, with a peculiar nature of parasite-specific immunosuppression that promotes long-term pathology and disability. Immune modulation in the host by parasitic antigens is an integral part of this disease. The current study attempts to dissect the immune responses of aminoacyl-tRNA synthetases (AARS) with emphasis on Brugia malayi asparaginyl-tRNA synthetase (BmAsnRS), since it is one among the highly expressed excretory/secretory proteins expressed in all stages of the parasite life cycle, whereas its role in filarial pathology has not been elaborately studied. Methods and Results: In this study, recombinant BmAsnRS (rBmAsnRS) immunological effects were studied in semipermissive filarial animal model Balb/c mice and on clinically defined human samples for LF. In mice study, humoral responses showed considerable titer levels with IgG2a isotype followed by IgG2b and IgG1. Immunoreactivity studies with clinical samples showed significant humoral responses especially in endemic normal with marked levels of IgG1 and IgG2 followed by IgG3. The cell-mediated immune response, evaluated by splenocytes and peripheral blood mononuclear cells proliferation, did not yield significant difference when compared with control groups. Cytokine profiling and qRT-PCR analysis of mice samples immunized with rBmAsnRS showed elevated levels of IFN-γ, IL-10, inhibitory factor-cytotoxic T lymphocyte-associated protein-A (CTLA-4) and Treg cell marker-Forkhead Box P3 (FoxP3). Conclusions: These observations suggest that rBmAsnRS has immunomodulatory effects with modified Th2 response along with suppressed cellular proliferation indicating the essence of this molecule for immune evasion by the parasite.


Assuntos
Antígenos de Helmintos/imunologia , Aspartato-tRNA Ligase/imunologia , Brugia Malayi/imunologia , Filariose Linfática/imunologia , Filariose Linfática/parasitologia , Interações Hospedeiro-Parasita/imunologia , Aminoacil-RNA de Transferência/imunologia , Animais , Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/isolamento & purificação , Brugia Malayi/enzimologia , Citocinas/metabolismo , Modelos Animais de Doenças , Filariose Linfática/diagnóstico , Feminino , Humanos , Imunoglobulina G/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/isolamento & purificação , Proteínas Recombinantes , Baço/citologia , Baço/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...