Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mod Pathol ; 37(3): 100422, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185250

RESUMO

Machine learning (ML) models are poised to transform surgical pathology practice. The most successful use attention mechanisms to examine whole slides, identify which areas of tissue are diagnostic, and use them to guide diagnosis. Tissue contaminants, such as floaters, represent unexpected tissue. Although human pathologists are extensively trained to consider and detect tissue contaminants, we examined their impact on ML models. We trained 4 whole-slide models. Three operate in placenta for the following functions: (1) detection of decidual arteriopathy, (2) estimation of gestational age, and (3) classification of macroscopic placental lesions. We also developed a model to detect prostate cancer in needle biopsies. We designed experiments wherein patches of contaminant tissue are randomly sampled from known slides and digitally added to patient slides and measured model performance. We measured the proportion of attention given to contaminants and examined the impact of contaminants in the t-distributed stochastic neighbor embedding feature space. Every model showed performance degradation in response to one or more tissue contaminants. Decidual arteriopathy detection--balanced accuracy decreased from 0.74 to 0.69 ± 0.01 with addition of 1 patch of prostate tissue for every 100 patches of placenta (1% contaminant). Bladder, added at 10% contaminant, raised the mean absolute error in estimating gestational age from 1.626 weeks to 2.371 ± 0.003 weeks. Blood, incorporated into placental sections, induced false-negative diagnoses of intervillous thrombi. Addition of bladder to prostate cancer needle biopsies induced false positives, a selection of high-attention patches, representing 0.033 mm2, and resulted in a 97% false-positive rate when added to needle biopsies. Contaminant patches received attention at or above the rate of the average patch of patient tissue. Tissue contaminants induce errors in modern ML models. The high level of attention given to contaminants indicates a failure to encode biological phenomena. Practitioners should move to quantify and ameliorate this problem.


Assuntos
Placenta , Neoplasias da Próstata , Gravidez , Masculino , Humanos , Feminino , Recém-Nascido , Placenta/patologia , Aprendizado de Máquina , Biópsia por Agulha , Próstata/patologia , Neoplasias da Próstata/patologia
2.
Med Image Anal ; 89: 102886, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37494811

RESUMO

Microsatellite instability (MSI) refers to alterations in the length of simple repetitive genomic sequences. MSI status serves as a prognostic and predictive factor in colorectal cancer. The MSI-high status is a good prognostic factor in stage II/III cancer, and predicts a lack of benefit to adjuvant fluorouracil chemotherapy in stage II cancer but a good response to immunotherapy in stage IV cancer. Therefore, determining MSI status in patients with colorectal cancer is important for identifying the appropriate treatment protocol. In the Pathology Artificial Intelligence Platform (PAIP) 2020 challenge, artificial intelligence researchers were invited to predict MSI status based on colorectal cancer slide images. Participants were required to perform two tasks. The primary task was to classify a given slide image as belonging to either the MSI-high or the microsatellite-stable group. The second task was tumor area segmentation to avoid ties with the main task. A total of 210 of the 495 participants enrolled in the challenge downloaded the images, and 23 teams submitted their final results. Seven teams from the top 10 participants agreed to disclose their algorithms, most of which were convolutional neural network-based deep learning models, such as EfficientNet and UNet. The top-ranked system achieved the highest F1 score (0.9231). This paper summarizes the various methods used in the PAIP 2020 challenge. This paper supports the effectiveness of digital pathology for identifying the relationship between colorectal cancer and the MSI characteristics.


Assuntos
Neoplasias Colorretais , Instabilidade de Microssatélites , Humanos , Inteligência Artificial , Prognóstico , Fluoruracila/uso terapêutico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia
3.
medRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37205404

RESUMO

Machine learning (ML) models are poised to transform surgical pathology practice. The most successful use attention mechanisms to examine whole slides, identify which areas of tissue are diagnostic, and use them to guide diagnosis. Tissue contaminants, such as floaters, represent unexpected tissue. While human pathologists are extensively trained to consider and detect tissue contaminants, we examined their impact on ML models. We trained 4 whole slide models. Three operate in placenta for 1) detection of decidual arteriopathy (DA), 2) estimation of gestational age (GA), and 3) classification of macroscopic placental lesions. We also developed a model to detect prostate cancer in needle biopsies. We designed experiments wherein patches of contaminant tissue are randomly sampled from known slides and digitally added to patient slides and measured model performance. We measured the proportion of attention given to contaminants and examined the impact of contaminants in T-distributed Stochastic Neighbor Embedding (tSNE) feature space. Every model showed performance degradation in response to one or more tissue contaminants. DA detection balanced accuracy decreased from 0.74 to 0.69 +/- 0.01 with addition of 1 patch of prostate tissue for every 100 patches of placenta (1% contaminant). Bladder, added at 10% contaminant raised the mean absolute error in estimating gestation age from 1.626 weeks to 2.371 +/ 0.003 weeks. Blood, incorporated into placental sections, induced false negative diagnoses of intervillous thrombi. Addition of bladder to prostate cancer needle biopsies induced false positives, a selection of high-attention patches, representing 0.033mm2, resulted in a 97% false positive rate when added to needle biopsies. Contaminant patches received attention at or above the rate of the average patch of patient tissue. Tissue contaminants induce errors in modern ML models. The high level of attention given to contaminants indicates a failure to encode biological phenomena. Practitioners should move to quantify and ameliorate this problem.

4.
Placenta ; 135: 43-50, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36958179

RESUMO

INTRODUCTION: Placental parenchymal lesions are commonly encountered and carry significant clinical associations. However, they are frequently missed or misclassified by general practice pathologists. Interpretation of pathology slides has emerged as one of the most successful applications of machine learning (ML) in medicine with applications ranging from cancer detection and prognostication to transplant medicine. The goal of this study was to use a whole-slide learning model to identify and classify placental parenchymal lesions including villous infarctions, intervillous thrombi (IVT), and perivillous fibrin deposition (PVFD). METHODS: We generated whole slide images from placental discs examined at our institution with infarct, IVT, PVFD, or no macroscopic lesion. Slides were analyzed as a set of overlapping patches. We extracted feature vectors from each patch using a pretrained convolutional neural network (EfficientNetV2L). We trained a model to assign attention to each vector and used the attentions as weights to produce a pooled feature vector. The pooled vector was classified as normal or 1 of 3 lesions using a fully connected network. Patch attention was plotted to highlight informative areas of the slide. RESULTS: Overall balanced accuracy in a test set of held-out slides was 0.86 with receiver-operator characteristic areas under the curve of 0.917-0.993. Cases of PVFD were frequently miscalled as normal or infarcts, the latter possibly due to the perivillous fibrin found at the periphery of infarctions. We used attention maps to further understand some errors, including one most likely due to poor tissue fixation and processing. DISCUSSION: We used a whole-slide learning paradigm to train models to recognize three of the most common placental parenchymal lesions. We used attention maps to gain insight into model function, which differed from intuitive explanations.


Assuntos
Doenças Placentárias , Trombose , Gravidez , Feminino , Humanos , Placenta/patologia , Doenças Placentárias/patologia , Trombose/patologia , Aprendizado de Máquina , Fibrina , Infarto/patologia
5.
Med Image Anal ; 84: 102699, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36463832

RESUMO

The density of mitotic figures (MF) within tumor tissue is known to be highly correlated with tumor proliferation and thus is an important marker in tumor grading. Recognition of MF by pathologists is subject to a strong inter-rater bias, limiting its prognostic value. State-of-the-art deep learning methods can support experts but have been observed to strongly deteriorate when applied in a different clinical environment. The variability caused by using different whole slide scanners has been identified as one decisive component in the underlying domain shift. The goal of the MICCAI MIDOG 2021 challenge was the creation of scanner-agnostic MF detection algorithms. The challenge used a training set of 200 cases, split across four scanning systems. As test set, an additional 100 cases split across four scanning systems, including two previously unseen scanners, were provided. In this paper, we evaluate and compare the approaches that were submitted to the challenge and identify methodological factors contributing to better performance. The winning algorithm yielded an F1 score of 0.748 (CI95: 0.704-0.781), exceeding the performance of six experts on the same task.


Assuntos
Algoritmos , Mitose , Humanos , Gradação de Tumores , Prognóstico
6.
Artif Intell Med ; 114: 102048, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33875159

RESUMO

The tumor proliferation, which is correlated with tumor grade, is a crucial biomarker indicative of breast cancer patients' prognosis. The most commonly used method in predicting tumor proliferation speed is the counting of mitotic figures in Hematoxylin and Eosin (H&E) histological slides. Manual mitosis counting is known to suffer from reproducibility problems. This paper presents a fully automated system for tumor proliferation prediction from whole slide images via mitosis counting. First, by considering the epithelial tissue as mitosis activity regions, we build a deep-learning-based region of interest detection method to select the high mitosis activity regions from whole slide images. Second, we learned a set of deep neural networks to detect mitosis detection from selected areas. The proposed mitosis detection system is designed to effectively overcome the mitosis detection challenges by two novel deep preprocessing and two-step hard negative mining approaches. Third, we trained a Support Vector Machine (SVM) classifier to predict the final tumor proliferation score. The proposed method was evaluated on the dataset of the Tumor Proliferation Assessment Challenge (TUPAC16) and achieved a 73.81 % F-measure and 0.612 weighted kappa score, respectively, outperforming all previous approaches significantly. Experimental results demonstrate that the proposed system considerably improves the tumor proliferation prediction accuracy and provides a reliable automated tool to support health care make-decisions.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Neoplasias da Mama/diagnóstico , Proliferação de Células , Feminino , Humanos , Mitose , Reprodutibilidade dos Testes
7.
J Med Syst ; 41(9): 146, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28808813

RESUMO

Based on the Nottingham criteria, the number of mitosis cells in histopathological slides is an important factor in diagnosis and grading of breast cancer. For manual grading of mitosis cells, histopathology slides of the tissue are examined by pathologists at 40× magnification for each patient. This task is very difficult and time-consuming even for experts. In this paper, a fully automated method is presented for accurate detection of mitosis cells in histopathology slide images. First a method based on maximum-likelihood is employed for segmentation and extraction of mitosis cell. Then a novel Maximized Inter-class Weighted Mean (MIWM) method is proposed that aims at reducing the number of extracted non-mitosis candidates that results in reducing the false positive mitosis detection rate. Finally, segmented candidates are classified into mitosis and non-mitosis classes by using a support vector machine (SVM) classifier. Experimental results demonstrate a significant improvement in accuracy of mitosis cells detection in different grades of breast cancer histopathological images.


Assuntos
Neoplasias da Mama , Humanos , Mitose , Probabilidade , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...