Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(15): 42658-42678, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35821317

RESUMO

Textile industries are one of the leading environmental pollutants by releasing harmful dye effluents. In many textile distrts, the amount of excess color in treated textile effluent that exceeds regulatory limitations is still being a major concern. The combining usage of nanomaterials and polymer material to solve these issues using various techniques. In this research, graphene oxide-copper oxide (GO-CuO) nanomaterial have been incorporated into cellulose-acetate (CA), poly-ether sulfone (PES) blend polymer by using phase inversion process to fabricate thin film nanocomposite (TFN) membrane for removal of dye pollutant. The physiochemical properties of prepared TFN materials were studied by Fourier transform infra-red spectroscopy (FT-IR), X-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), thermo gravimetric analysis (TGA), and mechanical strength analysis. Dye adsorption experiments were performed with four typical water-soluble organic dyes methylene blue (MB), rhodamine blue (Rh. B), methyl orange (MO) and Congo red (CR). After reaching adsorption equilibrium, the composite membrane final removal effectiveness for MB 92.42%, Rh. B 89.39%, CR 68.39%, and MO 58.82% respectively. As a result, the fabricated TFN material proves to be an effective adsorbent material for cationic dye molecules. Also, when the fabricated material was tested with textile industry effluent sample, all physio-chemical properties exhibited a considerable decrease in concentrations when compared to the real textile effluent concentration. The treated effluents permitted for a relatively greater growth and germination index of Tropical amaranth roots than the textile effluent, this demonstrates that phytotoxicity testing was also successful. The most effective temperature, concentration and pH were found to be 273 K, 1 × 10-5 M and pH 9. The fabricated TFN membrane material (GO-CuO @ CA-PES) can be recommended for water treatment applications.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Águas Residuárias , Cobre , Polímeros , Éter , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Celulose , Etil-Éteres , Éteres , Corantes/química , Nanocompostos/química , Poluentes Químicos da Água/química , Cinética
2.
Environ Sci Pollut Res Int ; 30(15): 42679-42696, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35902527

RESUMO

The single or blended polymer membrane lacks a few advantages based on the durability of the membrane. The novel triple-layered sandwich membrane Cs-CeO2@PU-CA membrane is cast through the phase inversion technique for chromium removal. This approach involves an arrangement of the top layer as chitosan which acts as a protective layer, and the sandwich layer of CeO2@PU membrane which acts as source for stability, and a supportive layer of cellulose acetate is arranged accordingly. The incorporation of cerium oxide nanoparticles into the polyurethane can create pores on the surface of the membrane due to the high aspect ratio of cerium oxide. The triple-layered arrangement shows higher porosity via water contact angle, the network of pores present on the membrane which is visible through morphology, and also the intermediate sandwich layer CeO2@PU provided with better mechanical strength which would be significant for changes achieved in adsorption technique. The batch adsorption was carried out with various ppm of Cr(VI) solution. The effect of pH, contact time, initial concentration, and temperature were analyzed and optimized for determining efficiency of chromium removal. Furthermore, the suitable adsorption isotherm and kinetics of the system were also determined for better fit via Langmuir, Freundlich, Temkin, and Sips along with pseudo-first-order and pseudo-second-order. The efficiency in adsorption is due to the prominent presence of hydroxyl, carboxyl, and hydrophilic group in the prepared membrane. Thus, the resultant prepared membrane can act as a potential chromium removal substrate.


Assuntos
Quitosana , Poluentes Químicos da Água , Purificação da Água , Cromo/análise , Poluentes Químicos da Água/análise , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...