Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38082875

RESUMO

The emergence of Human Body Communication (HBC), as an energy-efficient and physically secure mode of information exchange, has escalated the exploration of communication modalities between the human body and surrounding conducting objects. In this paper, we propose an Inter-Structure communication guided by Human Body while envisioning the need for non-contact sensing of biological objects such as humans with secure data offloading by analyzing the Structure-Human-Structure Interaction (SHSI) in Electro-Quasistatic (EQS) regime. Results show that the presence of a human between conducting structures (with Tx & Rx) can boost the received voltage by ~8 dB or more. Received signal level can be increased further by ~18 dB or more with a grounded receiver. Finite Element Method (FEM) based simulations are executed to study the positional variation of structure (with Rx) relative to body and earth's ground. Trends in simulation results are validated through experiments to develop an in-depth understanding of SHSI for EQS signals with low loss and enhanced physical security.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Eletrodos , Simulação por Computador , Comunicação
2.
IEEE Trans Biomed Eng ; 70(4): 1219-1230, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36215341

RESUMO

Sensors in and around the environment becoming ubiquitous has ushered in the age of smart animal agriculture which has the potential to greatly improve animal health and productivity. The data gathered from sensors dwelling in animal agriculture settings have made farms a part of the IoT space leading to active research in developing efficient communication methodologies for farm networks. This study focuses on the first hop of farm networks where data from inside the body of animals is communicated to a node dwelling outside the body. Novel experimental methods are used to calculate the channel loss at sub-GHz frequencies (100-900 MHz) to characterize the in-body to out-of-body (IBOB) communication channel in large animals. A first-of-its-kind 3D bovine modeling is done with computer vision techniques for detailed morphological features of the animal body to perform Finite Element Method based Electromagnetic simulations. The results of the simulations are experimentally validated to build a complete channel modeling methodology for IBOB animal-body-communication. The 3D bovine model is made available publicly on GitHub. The results illustrate that an IBOB communication channel is realizable from the rumen to the collar of ruminants with [Formula: see text] path loss at sub-GHz frequencies making communication feasible. The developed methodology has been illustrated for ruminants but can also be used for other IBOB studies. An efficient communication architecture can be formed using the channel modeling technique illustrated for IBOB communication in animals paving the way for the design and development of future smart animal agriculture systems.


Assuntos
Agricultura , Ruminantes , Bovinos , Animais , Comunicação , Projetos de Pesquisa
3.
IEEE Trans Biomed Eng ; 69(12): 3635-3644, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35560087

RESUMO

With the advent of wearables, Human Body Communication (HBC) has emerged as a physically secure and power-efficient alternative to the otherwise ubiquitous Wireless Body Area Network (WBAN). Whereas the most investigated HBC modalities have been Electric and Electro-quasistatic (EQS) Capacitive and Galvanic, recently Magnetic HBC (M-HBC) has been proposed as a viable alternative. Previous works have investigated M-HBC through application points-of-view, without exploring its fundamental working principle. In this paper, a ground up analysis is performed to study the possible effects and contributions of the human body channel in M-HBC over 1kHz to 10 GHz, by electromagnetic simulations and supporting experiments. The results show that while M-HBC can be successfully operated as a body area network, the human body itself plays a minimal or negligible role in its functionality. For Magneto-quasistatic (MQS) HBC (frequencies less than ∼30 MHz), the body is transparent to the quasistatic magnetic field. Conversely for higher frequencies, the conductivity of human tissues attenuates Magnetic HBC fields due to induced Eddy currents, preventing the body to support efficient waveguide modes. With this conceptual understanding developed, different modes of operations of MQS HBC are outlined for both high impedance capacitive and 50Ω termination cases, and their performances are compared with EQS HBC for similar sized devices, over varying distances between TX and RX. The resulting report presents a fundamental understanding towards M-HBC operation and its contrast with EQS HBC, aiding HBC device designers to make educated design decisions, depending on application scenarios.


Assuntos
Corpo Humano , Tecnologia sem Fio , Humanos , Eletricidade
4.
IEEE Trans Biomed Eng ; 69(12): 3717-3727, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35594211

RESUMO

Human Body Communication (HBC) is an alternative to radio wave-based Wireless Body Area Network (WBAN) because of its wide bandwidth leading to enhanced energy efficiency. Designing Modern HBC devices need the accurate electrical equivalent of the HBC channel for energy efficient communication. The objective of this paper is to present an improved lumped element-based detailed model of Galvanic HBC channel which can be used to explain the dependency of the channel behaviour on the internal body dependent parameters such as electrical properties of skin and muscle tissue layers along with the external parameters such as electrode size, electrode separation, geometrical position of the electrodes and return-path or parasitic capacitances. The model considers the frequency-dependent impedance of skin and muscle tissue layers and the effect of various coupling capacitances between the body and Tx/Rx electrodes to the Earth-Ground. A 2D planar structure of skin and muscle tissue layers is simulated using a Finite Element Method (FEM) tool to prove the validity of the proposed model. The effect of symmetry and asymmetry at the transmitter and receiver ends is also explained using the model. The model become very useful for fast calculation of Galvanic channel response without using any FEM tool. Experimental results show that the galvanic response is not only a function of channel length but also depends on the mismatch at the transmitter and receiver end. In case of a very high mismatch scenario, the channel behavior is dominated by the capacitive HBC, even for a galvanic excitation and termination.


Assuntos
Corpo Humano , Tecnologia sem Fio , Humanos , Capacitância Elétrica , Eletrodos
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 7570-7573, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892842

RESUMO

Continuous real-time health monitoring in animals is essential for ensuring animal welfare. In ruminants like cows, rumen health is closely intertwined with overall animal health. Therefore, in-situ monitoring of rumen health is critical. However, this demands in-body to out-of-body communication of sensor data. In this paper, we devise a method of channel modeling for a cow using experiments and FEM based simulations at 400 MHz. This technique can be further employed across all frequencies to characterize the communication channel for the development of a channel architecture that efficiently exploits its properties.


Assuntos
Rúmen , Ruminantes , Agricultura , Animais , Bovinos , Comunicação , Feminino
6.
IEEE Trans Biomed Eng ; 68(11): 3435-3446, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33872142

RESUMO

Human Body Communication (HBC) has come up as a promising alternative to traditional radio frequency (RF) Wireless Body Area Network (WBAN) technologies. This is essentially due to HBC providing a broadband communication channel with enhanced signal security in the physical layer due to lower radiation from the human body as compared to its RF counterparts. An in-depth understanding of the mechanism for the channel loss variability and associated biophysical model needs to be developed before electro-quasistatic (EQS) HBC can be used more frequently in WBAN consumer and medical applications. Recent developments have shown biophysical models that capture the channel response for fixed transmitter and receiver positions on the human body which do not capture the variability in the HBC channel for varying positions of the devices with respect to the body. In this study, we provide a detailed analysis of the change in path loss in a capacitive-HBC channel in the EQS domain. Causes of channel loss variability namely: inter-device coupling and effects of fringe fields due to body's shadowing effects are investigated. FEM based simulation results are used to analyze the channel response of human body for different positions and sizes of the device which are further verified using measurement results to validate the developed biophysical model. Using the biophysical model, we develop a closed form equation for the path loss in a capacitive HBC channel which is then analyzed as a function of the geometric properties of the device and the position with respect to the human body which will help pave the path towards future EQS-HBC WBAN design.


Assuntos
Comunicação , Tecnologia sem Fio , Simulação por Computador , Humanos
7.
Sci Rep ; 11(1): 4378, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623092

RESUMO

Radiative communication using electromagnetic fields is the backbone of today's wirelessly connected world, which implies that the physical signals are available for malicious interceptors to snoop within a 5-10 m distance, also increasing interference and reducing channel capacity. Recently, Electro-quasistatic Human Body Communication (EQS-HBC) was demonstrated which utilizes the human body's conductive properties to communicate without radiating the signals outside the body. Previous experiments showed that an attack with an antenna was unsuccessful at a distance more than 1 cm from the body surface and 15 cm from an EQS-HBC device. However, since this is a new communication modality, it calls for an investigation of new attack modalities-that can potentially exploit the physics utilized in EQS-HBC to break the system. In this study, we present a novel attack method for EQS-HBC devices, using the body of the attacker itself as a coupling surface and capacitive inter-body coupling between the user and the attacker. We develop theoretical understanding backed by experimental results for inter-body coupling, as a function of distance between the subjects. We utilize this newly developed understanding to design EQS-HBC transmitters that minimizes the attack distance through inter-body coupling, as well as the interference among multiple EQS-HBC users due to inter-body coupling. This understanding will allow us to develop more secure and robust EQS-HBC based body area networks in the future.


Assuntos
Segurança Computacional , Fenômenos Eletrofisiológicos , Dispositivos Eletrônicos Vestíveis/efeitos adversos , Tamanho Corporal , Campos Eletromagnéticos/efeitos adversos , Humanos , Internet
8.
IEEE Trans Biomed Eng ; 67(12): 3392-3402, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32305887

RESUMO

Human Body Communication (HBC) utilizes the electrical conductivity properties of the human body to communicate between devices in and around the body. The increased energy-efficiency and security provided by HBC compared to traditional radio wave based communication makes it a promising alternative to communicate between energy constrained wearable and implantable devices around the body.However, HBC requires electrical signals to be transmitted through the body, which makes it essential to have a thorough analysis of the safety aspects of such transmission. This paper looks into the compliance of the current density and electric/magnetic fields generated in different modalities of HBC with the established safety standards. Circuit and Finite Element Method (FEM) based simulations are carried out to quantitatively find the compliance of current density and fields with the established safety limits. The results show the currents and fields in capacitive HBC are orders of magnitude smaller than the specified limits. However, certain excitation modalties in galvanic HBC can result in current densities and fields exceeding the safety limits around the excitation point on the body near the electrode. A study with 7 human subjects (4 male, 3 female) is carried out over a month, using capacitive HBC.The study monitors the change in 5 vital parameters (Heart Rate, Mean Arterial Pressure, Respiration Rate, Peripheral Capillary Oxygen Saturation, Temperature), while wearing a HBC enabled device. Analysis of the acquired data statistically shows no significant change in any of the vital parameters of the subjects, confirming the results of the simulation study.


Assuntos
Corpo Humano , Tecnologia sem Fio , Comunicação , Eletricidade , Eletrodos , Feminino , Humanos , Masculino
9.
IEEE Trans Biomed Eng ; 66(6): 1791-1802, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30403618

RESUMO

Human body communication (HBC) has emerged as an alternative to radio wave communication for connecting low power, miniaturized wearable, and implantable devices in, on, and around the human body. HBC uses the human body as the communication channel between on-body devices. Previous studies characterizing the human body channel has reported widely varying channel response much of which has been attributed to the variation in measurement setup. This calls for the development of a unifying bio-physical model of HBC, supported by in-depth analysis and an understanding of the effect of excitation, termination modality on HBC measurements. This paper characterizes the human body channel up to 1 MHz frequency to evaluate it as a medium for the broadband communication. The communication occurs primarily in the electro-quasistatic (EQS) regime at these frequencies through the subcutaneous tissues. A lumped bio-physical model of HBC is developed, supported by experimental validations that provide insight into some of the key discrepancies found in previous studies. Voltage loss measurements are carried out both with an oscilloscope and a miniaturized wearable prototype to capture the effects of non-common ground. Results show that the channel loss is strongly dependent on the termination impedance at the receiver end, with up to 4 dB variation in average loss for different termination in an oscilloscope and an additional 9 dB channel loss with wearable prototype compared to an oscilloscope measurement. The measured channel response with capacitive termination reduces low-frequency loss and allows flat-band transfer function down to 13 KHz, establishing the human body as a broadband communication channel. Analysis of the measured results and the simulation model shows that instruments with 50 Ω input impedance (Vector Network Analyzer, Spectrum Analyzer) provides pessimistic estimation of channel loss at low frequencies. Instead, high impedance and capacitive termination should be used at the receiver end for accurate voltage mode loss measurements of the HBC channel at low frequencies. The experimentally validated bio-physical model shows that capacitive voltage mode termination can improve the low frequency loss by up to 50 dB, which helps broadband communication significantly.


Assuntos
Engenharia Biomédica/instrumentação , Comunicação , Eletrônica/instrumentação , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio/instrumentação , Eletricidade , Desenho de Equipamento , Antebraço/fisiologia , Humanos , Masculino , Próteses e Implantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...