Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 15(10): e47807, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38021877

RESUMO

Drug-induced autoimmune hepatitis (DIAIH) is a poorly understood form of drug-induced liver injury that presents with features mimicking autoimmune hepatitis. Statins, commonly prescribed for lowering cholesterol and for cardiovascular disease prevention, have been documented in rare cases as being responsible for DIAIH. In this case report, we detail a case where a patient developed DIAIH due to her atorvastatin. We also highlight the diagnostic approach and management strategies for DIAIH.

2.
Acta Neuropathol Commun ; 8(1): 122, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753055

RESUMO

An intronic hexanucleotide repeat expansion in C9ORF72 causes familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This repeat is thought to elicit toxicity through RNA mediated protein sequestration and repeat-associated non-AUG (RAN) translation of dipeptide repeat proteins (DPRs). We generated a series of transgenic Drosophila models expressing GGGGCC (G4C2) repeats either inside of an artificial intron within a GFP reporter or within the 5' untranslated region (UTR) of GFP placed in different downstream reading frames. Expression of 484 intronic repeats elicited minimal alterations in eye morphology, viability, longevity, or larval crawling but did trigger RNA foci formation, consistent with prior reports. In contrast, insertion of repeats into the 5' UTR elicited differential toxicity that was dependent on the reading frame of GFP relative to the repeat. Greater toxicity correlated with a short and unstructured carboxyl terminus (C-terminus) in the glycine-arginine (GR) RAN protein reading frame. This change in C-terminal sequence triggered nuclear accumulation of all three RAN DPRs. A similar differential toxicity and dependence on the GR C-terminus was observed when repeats were expressed in rodent neurons. The presence of the native C-termini across all three reading frames was partly protective. Taken together, these findings suggest that C-terminal sequences outside of the repeat region may alter the behavior and toxicity of dipeptide repeat proteins derived from GGGGCC repeats.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Expansão das Repetições de DNA , Demência Frontotemporal/genética , Biossíntese de Proteínas/genética , Fases de Leitura/genética , Animais , Dipeptídeos , Modelos Animais de Doenças , Drosophila , Ratos , Ratos Long-Evans
3.
EMBO Rep ; 20(9): e47498, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31347257

RESUMO

A CGG trinucleotide repeat expansion in the 5' UTR of FMR1 causes the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). This repeat supports a non-canonical mode of protein synthesis known as repeat-associated, non-AUG (RAN) translation. The mechanism underlying RAN translation at CGG repeats remains unclear. To identify modifiers of RAN translation and potential therapeutic targets, we performed a candidate-based screen of eukaryotic initiation factors and RNA helicases in cell-based assays and a Drosophila melanogaster model of FXTAS. We identified multiple modifiers of toxicity and RAN translation from an expanded CGG repeat in the context of the FMR1 5'UTR. These include the DEAD-box RNA helicase belle/DDX3X, the helicase accessory factors EIF4B/4H, and the start codon selectivity factors EIF1 and EIF5. Disrupting belle/DDX3X selectively inhibited FMR1 RAN translation in Drosophila in vivo and cultured human cells, and mitigated repeat-induced toxicity in Drosophila and primary rodent neurons. These findings implicate RNA secondary structure and start codon fidelity as critical elements mediating FMR1 RAN translation and identify potential targets for treating repeat-associated neurodegeneration.


Assuntos
Ataxia/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas de Drosophila/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Tremor/metabolismo , Animais , Ataxia/genética , Células Cultivadas , RNA Helicases DEAD-box/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Fatores de Iniciação em Eucariotos/genética , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , Masculino , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tremor/genética
4.
Ultrasound Med Biol ; 45(9): 2471-2484, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235205

RESUMO

Hydrogels are commonly used for the delivery of bioactive molecules, especially growth factors and cytokines capable of stimulating tissue regeneration. Regenerative processes are regulated by the concentrations and spatiotemporal presentations of these molecules. With conventional hydrogels, these critical delivery parameters cannot be actively modulated after implantation. We have developed composite hydrogel scaffolds where payload release is non-invasively modulated, in an on-demand manner, using ultrasound (US). These acoustically-responsive scaffolds (ARSs) consist of a fibrin matrix doped with a payload-carrying, perfluorocarbon (PFC) double emulsion. Previously, acoustic droplet vaporization (ADV) was used to trigger release of a pro-angiogenic growth factor, encapsulated in the ARS, which stimulated blood vessel formation in vivo. In the present study, we assess how characteristics of the monodispersed emulsion, fibrin matrix, and US impact ADV thresholds and the release efficiency of a dextran payload. ADV thresholds increased with the molecular weight of the PFC in the emulsion and inversely with the volume fraction of emulsion in the ARS. Payload release from ARSs with perfluoroheptane (C7) or perfluorooctane (C8) emulsions was dependent on the number of z-planes of US used to generate ADV and inversely dependent on the lateral spacing. Conversely, release from ARSs with perfluoropentane (C5) or perfluorohexane (C6) emulsions was less dependent on these US exposure parameters. After ADV, payload diffusion decreased significantly in ARSs with C5 or C6 emulsions compared with ARSs with C7 or C8 emulsions. The expansion of the ARS after ADV decreased with the molecular weight of the PFC. Non-selective release increased with the molecular weight of the PFC and thrombin concentration. Overall, these findings can be used for optimization of ARS properties and US parameters in future therapeutic applications.


Assuntos
Acústica , Dextranos/química , Fibrina/química , Hidrogéis/química , Volatilização , Emulsões/química , Fluorocarbonos/química , Heptanos , Hidrocarbonetos Fluorados/química
5.
Biomaterials ; 194: 14-24, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30572283

RESUMO

Conventional tissue engineering approaches rely on scaffold-based delivery of exogenous proteins, genes, and/or cells to stimulate regeneration via growth factor signaling. However, scaffold-based approaches do not allow active control of dose, timing, or spatial localization of a delivered growth factor once the scaffold is implanted, yet these are all crucial parameters in promoting tissue regeneration. To address this limitation, we developed a stable cell line containing a heat-activated and rapamycin-dependent gene expression system. In this study, we investigate how high intensity focused ultrasound (HIFU) can spatiotemporally control firefly luciferase (fLuc) transgene activity both in vitro and in vivo by the tightly controlled generation of hyperthermia. Cells were incorporated into composite scaffolds containing fibrin and hydroxyapatite particles, which yielded significant increases in acoustic attenuation and heating in response to HIFU compared to fibrin alone. Using 2.5 MHz HIFU, transgene activation was observed at acoustic intensities of 201 W/cm2 and higher. Transgene activation was spatially patterned in the scaffolds by rastering HIFU at speeds up to 0.15 mm/s. In an in vivo study, a 67-fold increase in fLuc activity was observed in scaffolds exposed to HIFU and rapamycin versus rapamycin only at 2 days post implantation. Repeated activation of transgene expression was also demonstrated 8 days after implantation. No differences in in vivo scaffold degradation or compaction were observed between +HIFU and -HIFU groups. These results highlight the potential utility of using this heat-activated and rapamycin-dependent gene expression system in combination with HIFU for the controlled stimulation of tissue regeneration.


Assuntos
Durapatita/química , Fibrina/química , Expressão Gênica , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Transgenes , Animais , Materiais Biocompatíveis/química , Linhagem Celular , Feminino , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Luciferases de Vaga-Lume/genética , Camundongos
6.
Neuron ; 93(2): 331-347, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28065649

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder caused by a limited expansion of CGG repeats in the 5' UTR of FMR1. Two mechanisms are proposed to cause FXTAS: RNA gain-of-function, where CGG RNA sequesters specific proteins, and translation of CGG repeats into a polyglycine-containing protein, FMRpolyG. Here we developed transgenic mice expressing CGG repeat RNA with or without FMRpolyG. Expression of FMRpolyG is pathogenic, while the sole expression of CGG RNA is not. FMRpolyG interacts with the nuclear lamina protein LAP2ß and disorganizes the nuclear lamina architecture in neurons differentiated from FXTAS iPS cells. Finally, expression of LAP2ß rescues neuronal death induced by FMRpolyG. Overall, these results suggest that translation of expanded CGG repeats into FMRpolyG alters nuclear lamina architecture and drives pathogenesis in FXTAS.


Assuntos
Ataxia/genética , Proteínas de Ligação a DNA/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Proteínas de Membrana/metabolismo , Lâmina Nuclear/metabolismo , Peptídeos/genética , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Tremor/genética , Expansão das Repetições de Trinucleotídeos/genética , Animais , Ataxia/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Lâmina Nuclear/patologia , Peptídeos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Tremor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...