Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(21): 14973-14981, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38737649

RESUMO

New semiconductors containing fluorene or fluorenone central fragments along with phosphonic acid anchoring groups were synthesized and investigated as electron transporting materials for possible application in photovoltaic devices. These derivatives demonstrate good thermal stability and suitable electrochemical properties for effective electron transport from perovskite, Sb2S3 and Sb2Se3 absorber layers. Self-assembled fluorene and fluorenone electron-transporting materials have shown improved substrate wettability, indicating bond formation between monolayer-forming compounds and the ITO, TiO2, Sb2S3, or Sb2Se3 surface. Additionally, investigated materials have compatible energetic band alignment and can passivate perovskite interface defects, which makes them interesting candidates for application in the n-i-p structure perovskite solar cell.

2.
Sensors (Basel) ; 23(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36850880

RESUMO

Fabry-Perot laser diodes based on (Al, Ga)As and Ga(As, Bi) with single or multiple parabolic or rectangular-shaped quantum wells (QWs) emitting at the 780-1100 nm spectral range were fabricated and investigated for optimization of the laser QW design and composition of QWs. The laser structures were grown using the molecular beam epitaxy (MBE) technique on the n-type GaAs(100) substrate. The photolithography process was performed to fabricate edge-emitting laser bars of 5 µm by 500 µm in size. The temperature-dependent power-current measurements showed that the characteristic threshold current of the fabricated LDs was in the 60-120 mA range. Light and current characteristics were almost linear up to (1.2-2.0) Ith. Low-frequency 10 Hz-20 kHz electrical and optical noise characteristics were measured in the temperature range from 70 K to 290 K and showed that the low-frequency optical and electrical noise spectra are comprised of 1/f and Lorentzian-type components. The positive cross-correlation between optical and electrical fluctuations was observed.

3.
Materials (Basel) ; 15(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36499853

RESUMO

Antimony selenide (Sb2Se3) material has drawn considerable attention as an Earth-abundant and non-toxic photovoltaic absorber. The power conversion efficiency of Sb2Se3-based solar cells increased from less than 2% to over 10% in a decade. Different deposition methods were implemented to synthesize Sb2Se3 thin films, and various device structures were tested. In search of a more environmentally friendly device composition, the common CdS buffer layer is being replaced with oxides. It was identified that on oxide substrates such as TiO2 using vacuum-based close-space deposition methods, an intermediate deposition step was required to produce high-quality thin films. However, little or no investigation was carried out using another very successful vacuum deposition approach in Sb2Se3 technology called vapour transport deposition (VTD). In this work, we present optimized VTD process conditions to achieve compact, pinhole-free, ultra-thin (<400 nm) Sb2Se3 absorber layers. Three process steps were designed to first deposit the seed layer, then anneal it and, at the final stage, deposit a complete Sb2Se3 absorber. Fabricated solar cells using absorbers as thin as 400 nm generated a short-circuit current density over 30 mA/cm2, which demonstrates both the very high absorption capabilities of Sb2Se3 material and the prospects for ultra-thin solar cell application.

4.
Environ Sci Pollut Res Int ; 29(49): 74933-74950, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35648351

RESUMO

The muscovite mica clay-graphene oxide-maghemite-magnetite (γ-Fe2O3-Fe3O4) composite was first used for the adsorption of caesium(I) and cobalt(II). The presence of clay minerals, graphene oxide, maghemite, and magnetite was detected in the prepared composite by XRD, WD-XRF, Mössbauer spectroscopy, and ATR-FTIR. The SEM and TEM results show that the composite has a layered structure with irregularly shaped pores on the surface. It was found that the adsorption of ions depends on the initial concentration, pH (except for caesium), mass of adsorbent, temperature, and contact time. The maximum adsorption capacity for Cs(I) and Co(II) was 2286 mg/g and 652 mg/g, respectively, and was obtained at concentrations (Cs(I) = 12,630 mg/L; Co(II) = 3200 mg/L), adsorbent mass of 0.01 g, pH (Cs(I) = 7; Co(II) = 5), temperature of 20 ± 1 °C, and contact time of 24 h. The high adsorption capacity of the composite could be due to a diversity of functional groups, a large number of active sites or the multilayer adsorption of caesium and cobalt ions on the surface of the composite. The Freundlich, Langmuir isotherms, and the pseudo-second-order kinetic model better describe the adsorption of these ions on the composite. The adsorption was non-spontaneous endothermic for Cs(I) and spontaneous endothermic for Co(II). The proposed mechanism of adsorption of Cs and Co ions on the composite is complex and involves electrostatic interactions and ion exchange. The ANFIS model proved to be quite effective in predicting the adsorption of Cs(I) and Co(II), as shown by the obtained values of R2, MSE, SSE, and ARE.

5.
Materials (Basel) ; 14(8)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920275

RESUMO

In the present work, the kinetics of electroless deposition of Pt, using a cobalt ion redox system (Co3+/Co2+) as a reducing agent, has been investigated. The deposition rate of Pt depends on the pH, concentration of reactants, and temperature. The deaeration and bubbling of the plating solution with argon play an essential role. It was found that 0.11 mg cm-2 of Pt films could be deposited on the surface of a roughed glass sheet in one hour without replenishing the solution. Additional data have been obtained on the grounds of electrochemical quartz crystal microbalance experiments. The bubbling (agitation) of the electroless Pt plating solution with argon during the deposition of Pt results in a higher deposition rate and is ca. 3 µg cm-2 min-1. The Pt deposition rate is far less, and is as low as 0.14 µg cm-2 min-1 when the electroless Pt plating solution is not bubbled with argon during the deposition of Pt.

6.
Nanomaterials (Basel) ; 10(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003320

RESUMO

Inexpensive perovskite light-emitting devices fabricated by a simple wet chemical approach have recently demonstrated very prospective characteristics such as narrowband emission, low turn-on bias, high brightness, and high external quantum efficiency of electroluminescence, and have presented a good alternative to well-established technology of epitaxially grown III-V semiconducting alloys. Engineering of highly efficient perovskite light-emitting devices emitting green, red, and near-infrared light has been demonstrated in numerous reports and has faced no major fundamental limitations. On the contrary, the devices emitting blue light, in particular, based on 3D mixed-halide perovskites, suffer from electric field-induced phase separation (segregation). This crystal lattice defect-mediated phenomenon results in an undesirable color change of electroluminescence. Here we report a novel approach towards the suppression of the segregation in single-layer perovskite light-emitting electrochemical cells. Co-crystallization of direct band gap CsPb(Cl,Br)3 and indirect band gap Cs4Pb(Cl,Br)6 phases in the presence of poly(ethylene oxide) during a thin film deposition affords passivation of surface defect states and an increase in the density of photoexcited charge carriers in CsPb(Cl,Br)3 grains. Furthermore, the hexahalide phase prevents the dissociation of the emissive grains in the strong electric field during the device operation. Entirely resistant to 5.7 × 106 V·m-1 electric field-driven segregation light-emitting electrochemical cell exhibits stable emission at wavelength 479 nm with maximum external quantum efficiency 0.7%, maximum brightness 47 cd·m-2, and turn-on bias of 2.5 V.

7.
Nanoscale Res Lett ; 15(1): 121, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32451638

RESUMO

The distribution of alloyed atoms in semiconductors often deviates from a random distribution which can have significant effects on the properties of the materials. In this study, scanning transmission electron microscopy techniques are employed to analyze the distribution of Bi in several distinctly MBE grown GaAs1-xBix alloys. Statistical quantification of atomic-resolution HAADF images, as well as numerical simulations, are employed to interpret the contrast from Bi-containing columns at atomically abrupt (001) GaAs-GaAsBi interface and the onset of CuPt-type ordering. Using monochromated EELS mapping, bulk plasmon energy red-shifts are examined in a sample exhibiting phase-separated domains. This suggests a simple method to investigate local GaAsBi unit-cell volume expansions and to complement standard X-ray-based lattice-strain measurements. Also, a single-variant CuPt-ordered GaAsBi sample grown on an offcut substrate is characterized with atomic scale compositional EDX mappings, and the order parameter is estimated. Finally, a GaAsBi alloy with a vertical Bi composition modulation is synthesized using a low substrate rotation rate. Atomically, resolved EDX and HAADF imaging shows that the usual CuPt-type ordering is further modulated along the [001] growth axis with a period of three lattice constants. These distinct GaAsBi samples exemplify the variety of Bi distributions that can be achieved in this alloy, shedding light on the incorporation mechanisms of Bi atoms and ways to further develop Bi-containing III-V semiconductors.

8.
Sci Rep ; 10(1): 2002, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029827

RESUMO

The dilute bismide alloy GaAs1-xBix has drawn significant attention from researchers interested in its fundamental properties and the potential for infrared optoelectronics applications. To extend the study of bismides, molecular-beam heteroepitaxy of nominally 1.0 eV bandgap bismide on Ge substrates is comprehensively investigated. Analysis of atomic-resolution anti-phase domain (APD) images in the direct-epitaxy revealed a high-density of Ga vacancies and a reduced Bi content at their boundaries. This likely played a key role in the preferential dissolution of Bi atoms from the APD interiors and Bi spiking in Ge during thermal annealing. Introduction of GaAs buffer on offcut Ge largely suppressed the formation of APDs, producing high-quality bismide with single-variant CuPtB-type ordered domains as large as 200 nm. Atomic-resolution X-ray imaging showed that 2-dimensional Bi-rich (111) planes contain up to x = 9% Bi. The anomalously early onset of localization found in the temperature-dependent photoluminescence suggests enhanced interactions among Bi states, as compared to non-ordered samples. Growth of large-domain single-variant ordered GaAs1-xBix films provides new prospects for detailed analysis of the structural modulation effects and may allow to further tailor properties of this alloy for optoelectronic applications.

9.
Phys Chem Chem Phys ; 21(35): 18930-18938, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31453594

RESUMO

All-inorganic lead halide perovskites of various compositions have emerged as a prospective family of materials for light-emitting devices and photonic applications. However, a comprehensive study of their structural and electronic properties is still missing. Moreover, thin film fabrication of these perovskites comprising heterohalide anions by wet chemistry approaches also remains challenging. Here we fabricate high-quality CsPbBr3-xClx perovskite thin films using a wet chemical method accompanied by a chemical vapor anion exchange procedure, which allows rigorously studying their optical and structural properties at different compositions. Namely, we present both the numerical and experimental studies of the electronic properties of all-inorganic mixed-halide perovskites, showing their optical absorption, excitonic photoluminescence and exciton binding energy, phase, chemical composition, and band structure and the band gap evolution with a gradual change in x in CsPbBr3-xClx. The results reveal that as Cl ions substitute for Br ones in the perovskite crystal lattice the room-temperature phase does not change its orthorhombic symmetry, whereas the energy of the direct electronic transition from the valence to conduction band at the Γ-point increases nonlinearly. By using the experimentally derived nonlinear dependence it is easy to accurately predict the band gap for any CsPbBr3-xClx perovskite thin film consisting of grains with sizes beyond the quantum confinement regime.

10.
ACS Appl Mater Interfaces ; 11(1): 1040-1048, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30540432

RESUMO

Inorganic cesium lead halide perovskite nanowires, generating laser emission in the broad spectral range at room temperature and low threshold, have become powerful tools for the cutting-edge applications in the optoelectronics and nanophotonics. However, to achieve high-quality nanowires with the outstanding optical properties, it was necessary to employ long-lasting and costly methods of their synthesis, as well as postsynthetic separation and transfer procedures that are not convenient for large-scale production. Here we report a novel approach to fabricate high-quality CsPbBr3 nanolasers obtained by rapid precipitation from dimethyl sulfoxide solution sprayed onto hydrophobic substrates at ambient conditions. The synthesis technique allows producing the well-separated nanowires with a broad size distribution of 2-50 µm in 5-7 min, being the fastest method to the best of our knowledge. The formation of nanowires occurs via ligand-assisted reprecipitation triggered by intermolecular proton transfer from (CH3)2CHOH to H2O in the presence of a minor amount of water. The XRD patterns confirm an orthorhombic crystal structure of the as-grown CsPbBr3 single nanowires. Scanning electron microscopy images reveal their regular shape and truncated pyramidal end facets, while high-resolution transmission electron microscopy ones demonstrate their single-crystal structure. The lifetime of excitonic emission of the nanowires is found to be 7 ns, when the samples are excited with energy below the lasing threshold, manifesting the low concentration of defect states. The measured nanolasers of different lengths exhibit pronounced stimulated emission above 13 µJ cm-2 excitation threshold with quality factor Q = 1017-6166. Their high performance is assumed to be related to their monocrystalline structure, low concentration of defect states, and improved end facet reflectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...