Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16813, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039124

RESUMO

The demand for modern electronics and semiconductors has increased throughout the years, which has enabled the innovation and exploration of solution-processed deposition. Solution-based processes have gained a lot of interest due to the low-cost fabrication and the large fabrication areas without the need for high-vacuum equipment. In this study, we utilized the ZnO ink for inkjet printer ink to fabricate a thin film via Electrohydrodynamic printing. Three different ink solutions were prepared for experimentation. The EHD printing technique demonstrated the ink's compatibility with and without the modifications. The outcomes of the EHD printed materials were comparable with the spin-coated thin films. The EHD-printed films demonstrated better results in comparison to spin-coated films. Ra and Rq of the EHD film measured at 3.651 nm and 4.973 nm, respectively. It improved the absorbance up to two-fold at 360 nm wavelength and electrical conductivity up to 40% compared to the spin-coated films. Furthermore, the optimization of the printing parameters can lead to the improved morphology and thickness of the EHD thin films.

2.
Sci Rep ; 13(1): 20201, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980391

RESUMO

The conventional dictionary learning (DL) algorithms aim to adapt the dictionary/sparse code to individual functional magnetic resonance imaging (fMRI) data. Thus, lacking the capability to consolidate the spatiotemporal diversities offered by other subjects. Considering that subject-wise (sw) data matrix can be decomposed into the sparse linear combination of multi-subject (MS) time courses and MS spatial maps, two new algorithms, sw sequential DL (swsDL) and sw block DL (swbDL), have been proposed. They are based on the novel framework, defined by the mixing model, where base matrices prepared by operating a computationally fast sparse spatiotemporal blind source separation method over multiple subjects are employed to adapt the mixing matrices to sw training data. They solve the optimization models formulated using [Formula: see text]/[Formula: see text]-norm penalization/constraints through dictionary/sparse code pair update and alternating minimization approach. They are unique because no existing sparse DL method can incorporate MS spatiotemporal components while updating sw atoms/sparse codes, which can eventually be assembled using neuroscience knowledge to extract group-level dynamics. Various fMRI datasets are used to evaluate and compare the performance of the proposed algorithms with existing state-of-the-art algorithms. Specifically, overall, a [Formula: see text] increase in the mean correlation value and [Formula: see text] reduction in the mean computation time exhibited by swsDL and swbDL, respectively, over the adaptive consistent sequential dictionary algorithm.

3.
Sci Rep ; 13(1): 16319, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770516

RESUMO

Additive manufacturing (AM) enables the production of high value and high performance components with applications from aerospace to biomedical fields. We report here on the fabrication of poly(3-hexylthiophene): phenyl-C61-butyric acid methyl ester (P3HT:PCBM) thin films through the electrohydrodynamic atomization (EHDA) process and its integration as absorber layer for organic solar cells. Prior to the film fabrication, the optimization of the process was carried out by developing the operating envelope for the P3HT:PCBM ink to determine the optimal flow rate and the appropriate applied voltage to achieve a stable-cone deposition mode. The EHDA printed thin-film's topography, morphology and optical properties were systematically analyzed. The root-mean-square roughness was found to vary significantly with the annealing temperature and the flow rate and ranged from 1.938 to 3.345 nm. The estimated film mass and thickness were found between 3.235 and 23.471 mg and 597.5 nm to 1.60 µm, respectively. The films exhibited a broad visible absorption spectrum ranging from ~ 340 to ~ 600 nm, with a maximum peak λmax located at ~ 500 nm. As the annealing temperature and the flow rate were increased, discernible alterations in the PCBM clusters were consequently observed in the blends of the film and the size of the PCBM clusters has decreased by 3% while the distance between them was highly reduced by as much as 82%.

4.
Materials (Basel) ; 14(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205646

RESUMO

Application of cryogenic fluids for efficient heat dissipation is gradually becoming part and parcel of titanium machining. Not much research is done to establish the minimum quantity of a cryogenic fluid required to sustain a machining process with respect to a given material removal rate. This article presents an experimental investigation for quantifying the sustainability of milling a commonly used titanium alloy (Ti-6Al-4V) by varying mass flow rates of two kinds of cryogenic coolants at various levels of cutting speed. The three cooling options tested are dry (no coolant), evaporative cryogenic coolant (liquid nitrogen), and throttle cryogenic coolant (compressed carbon dioxide gas). The milling sustainability is quantified in terms of the following metrics: tool damage, fluid cost, specific cutting energy, work surface roughness, and productivity. Dry milling carried out the at the highest level of cutting speed yielded the worst results regarding tool damage and surface roughness. Likewise, the evaporative coolant applied with the highest flow rate and at the lowest cutting speed was the worst performer with respect to energy consumption. From a holistic perspective, the throttle cryogenic coolant applied at the highest levels of mass flow rate and cutting speed stood out to be the most sustainable option.

5.
Materials (Basel) ; 14(4)2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567552

RESUMO

Lightweight materials are finding plentiful applications in various engineering sectors due to their high strength-to-weight ratios. Hole-making is an inevitable requirement for their structural applications, which is often marred by thermal damages of the drill causing unacceptable shortening of tool life. Efficient cooling of the tool is a prime requirement for enhancing the process viability. The current work presents a novel technique of cooling only the twist drill between drilling of holes with no effect of the applied cryogenic coolant transferred to the work material. The technique is applied in the drilling of two commonly used high-strength lightweight materials: carbon fibers reinforced polymer (CFRP) and an alloy of titanium (Ti-6Al-4V). The efficacy of the cooling approach is compared with those of conventionally applied continuous cryogenic cooling and no-cooling. The effectiveness is quantified in terms of tool wear, thrust force, hole quality, specific cutting energy, productivity, and consumption of the cryogenic fluid. The experimental work leads to a finding that between-the-holes cryogenic cooling possesses a rich potential in curbing tool wear, reducing thrust force and specific energy consumption, and improving hole quality in drilling of CFRP. Regarding the titanium alloy, it yields a much better surface finish and lesser consumption of specific cutting energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...