Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 40(7): 211, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38777956

RESUMO

Human nutrition and health rely on edible oils. Global demand for edible oils is expanding, necessitating the discovery of new natural oil sources subjected to adequate quality and safety evaluation. However, in contrast to other agricultural products, India's edible oil supply is surprisingly dependent on imports. The microbial oil is generated by fermentation of oleaginous yeast Rhodotorula mucilaginosa IIPL32 MTCC 25056 using biodiesel plant byproduct crude glycerol as a fermentable carbon source. Enriched with monounsaturated fatty acid, nutritional indices mapping based on the fatty acid composition of the yeast SCO, suggested its plausible use as an edible oil blend. In the present study, acute toxicity evaluation of the yeast SCO in C57BL/6 mice has been performed by randomly dividing the animals into 5 groups with 50, 300, 2000, and 5000 mg/Kg yeast SCO dosage, respectively, and predicted the median lethal dose (LD50). Detailed blood biochemistry and kidney and liver histopathology analyses were also reported. The functions of the liver enzymes were also evaluated to check and confirm the anticipated toxicity. To determine cell viability and in vitro biocompatibility, the 3T3-L1 cell line and haemolysis tests were performed. The results suggested the plausible use of yeast SCO as an edible oil blend due to its non-toxic nature in mice models.


Assuntos
Fígado , Camundongos Endogâmicos C57BL , Rhodotorula , Animais , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Rhodotorula/metabolismo , Fermentação , Dose Letal Mediana , Sobrevivência Celular/efeitos dos fármacos , Óleos de Plantas/toxicidade , Óleos de Plantas/metabolismo , Ácidos Graxos/metabolismo , Glicerol/metabolismo , Biocombustíveis , Rim/efeitos dos fármacos , Testes de Toxicidade Aguda , Masculino , Administração Oral , Índia
3.
Enzyme Microb Technol ; 148: 109806, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34116765

RESUMO

Functionalizing C-H bond poses one of the most significant challenges for chemists providing them with very few substrate-specific synthetic routes. Despite being incredibly plastic in their enzymatic ability, they are confined with deficient enzymatic action and limited explicitness of the substrates. In this study, we have endeavored to characterize novel cytochrome P450 from Bacillus aryabhattai (CYP-BA), a homolog of CYP P450-BM3, by taking interdisciplinary approaches. We conducted structure and sequence comparison to understand the conservation pattern for active site residues, conserved fold, evolutionary relationships among others. Molecular dynamics simulations were performed to understand the dynamic nature and interaction with the substrates. CYP-BA was successfully cloned, purified, and characterized. The enzyme's stability toward various physicochemical parameters was evaluated by UV-vis spectroscopy and Circular Dichroism (CD) spectroscopy. Various saturated fatty acids being the natural cytochrome P450 substrates were evaluated as catalytic efficiency of substrate oxidation by CYP-BA. The binding affinity of these natural substrates was monitored against CYP-BA by isothermal titration calorimetry (ITC). The catalytic performance of CYP-BA was satisfactory enough to proceed to the next step, that is, engineering to expand the substrate range to include polycyclic aromatic hydrocarbons (PAH). This is the first evidence of cloning, purifying and characterizing a novel homolog of CYP-BM3 to enable a better understanding of this novel biocatalyst and to provide a platform toward expanding its catalytic process through enzyme engineering.


Assuntos
Bacillus , NADPH-Ferri-Hemoproteína Redutase , Bacillus/genética , Proteínas de Bactérias/genética , Sistema Enzimático do Citocromo P-450/genética
4.
Bioresour Technol ; 309: 123329, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32315915

RESUMO

This work was aimed to strategically scale-up the yeast lipid production process using Reynolds number as a standard rheological parameter from 50 mL to 50 L scale. Oleaginous yeast Rhodotorula mucilaginosa IIPL32 was cultivated in xylose rich corncob hydrolysate. The fermentation process for growth and maturation was operated in fed-batch with two different C/N ratios of 40 and 60. The hydrodynamic parameters were used to standardize and represent the effect of rheology on the fermentation process. The growth pattern of the yeast was found similar in both shake flask and fermenter with the maximum growth observed at 48 h. The lipid yield increased from 0.4 g/L and 0.5 g/L to 1.3 g/L and 1.83 g/L for 50 mL to 50 L for C/N ratio 40 and 60 respectively. The increase in productivity during the growth phase and lipid accumulation during the maturation phase showed that the scale-up strategy was successful.


Assuntos
Rhodotorula , Zea mays , Fermentação , Xilose , Leveduras
5.
J Agric Food Chem ; 67(4): 1173-1186, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30618252

RESUMO

Kluyveromyces marxianus IIPE453 can utilize biomass-derived fermentable sugars for xylitol and ethanol fermentation. In this study, the xylitol production in the native strain was improved by overexpression of endogenous d-xylose reductase gene. A suitable expression cassette harboring the gene of interest was constructed and incorporated in the native yeast. qPCR analysis demonstrated the 2.1-fold enhancement in d-xylose reductase transcript levels in the modified strain with 1.62-fold enhancement in overall xylitol yield without affecting its ethanol fermenting capacity. Material balance analysis on 2 kg of sugar cane bagasse-derived fermentable sugars illustrated an excess of 58.62 ± 0.15 g of xylitol production by transformed strain in comparison to the wild variety with similar ethanol yield. The modified strain can be suitably used as a single biocatalyst for multiproduct biorefinery application.


Assuntos
Etanol/metabolismo , Kluyveromyces/metabolismo , Lignina/metabolismo , Xilitol/metabolismo , Celulose/metabolismo , D-Xilulose Redutase/genética , D-Xilulose Redutase/metabolismo , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Kluyveromyces/enzimologia , Kluyveromyces/genética , Saccharum/metabolismo , Saccharum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...