Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499220

RESUMO

The V-domain Ig suppressor of T-cell activation (VISTA) has been recognized as a critical negative regulator of antitumor immune response and is gaining growing interest as a potential pharmacological target in immunotherapy. This molecule is highly expressed in hematopoietic stem cells and myeloid compartment, and it has been found upmodulated in acute myeloid leukemia (AML). However, VISTA-associated immune features are relatively unexplored in myeloid malignancies. Herein, we aimed to explore whether this immune checkpoint regulator could play a role in the generation of an immune escape environment in AML patients. We characterized VISTA mRNA expression levels in leukemia cell lines and in large publicly available cohorts of specimens from bone marrow of healthy individuals and AML patients at diagnosis by deploying bulk and single-cell RNA sequencing. We also defined the correlations with leukemia-associated burden using results of whole-exome sequencing of AML samples at disease onset. We showed that VISTA expression linearly increased across the myeloid differentiation tree in normal hematopoiesis. Accordingly, its transcript was highly enriched in AML cell lines as well as in AML patients at diagnosis presenting with myelomonocytic and monocytic differentiation. A strong correlation was seen with NPM1 mutations regardless of the presence of FLT3 lesions. Furthermore, VISTA expression levels at baseline correlated with disease recurrence in patients with normal karyotype and NPM1 mutations, a subgroup traditionally considered as favorable according to current diagnostic schemes. Indeed, when compared to patients with long-term remission (>5 years after standard chemotherapy regimens), cases relapsing within 2 years from diagnosis had increased VISTA expression in both leukemia and T cells. Our results suggest a rationale for developing VISTA-targeted therapeutic strategies to treat molecularly defined subgroups of AML patients to prevent disease recurrence and treatment resistance.


Assuntos
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Proteínas Nucleares/genética , Prognóstico , Mutação , Nucleofosmina , Leucemia Mieloide Aguda/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética
2.
Ther Clin Risk Manag ; 17: 1343-1351, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34934322

RESUMO

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare disorder of hematopoietic stem cells genetically defined by the acquisition of somatic mutations in the X-linked phosphatidylinositol glycan anchor biosynthesis, class A (PIGA) gene. PIGA is essential for the synthesis of glycosyl phosphatidylinositol (GPI) anchor proteins and its mutations result in a deficiency of such molecules on the membrane of blood cells derived from the mutant clone. In particular, the lack of the GPI-linked complement regulatory proteins CD55 and CD59 is responsible for the increased sensitivity of PNH erythrocytes to complement-mediated destruction. Indeed, the classical clinical picture of PNH includes signs and symptoms of intravascular hemolysis along with variable degrees of cytopenia and a strong tendency to thrombosis, hallmarks of the disease. Before the introduction of anti-complement inhibitors, PNH was characterized by a high mortality primarily due to thrombotic events. The approval of the terminal anti-complement inhibitor eculizumab in 2007 introduced a paradigm shift in the treatment of the disease with improvement of the chronic hemolytic process and dramatic reduction of the thrombotic rate. However, eculizumab has a relatively short half-life when considering a life-long treatment, with obvious consequences as to the quality of life of treated patients necessitating relatively frequent drug administrations. Moreover, up to 30% of PNH patients undergoing eculizumab therapy show a suboptimal response, continuing to require red cell transfusions because of extravascular hemolysis or breakthrough hemolytic episodes. In 2019, the FDA approved the second-generation C5 inhibitor ravulizumab, a long-lasting agent with a better control of disease manifestations. Herein, we discuss the use of ravulizumab in PNH, its differences with first-generation C5 inhibitors, the research evidence supporting the safety and efficacy of this drug and its impact on costs for health systems and quality of life of PNH patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...