Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytometry A ; 89(2): 135-47, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25688721

RESUMO

Submicron-sized vesicles released by cells are increasingly recognized for their role in intercellular communication and as biomarkers of disease. Methods for high-throughput, multi-parameter analysis of such extracellular vesicles (EVs) are crucial to further investigate their diversity and function. We recently developed a high-resolution flow cytometry-based method (using a modified BD Influx) for quantitative and qualitative analysis of EVs. The fact that the majority of EVs is <200 nm in size requires special attention with relation to specific conditions of the flow cytometer, as well as sample concentration and event rate. In this study, we investigated how (too) high particle concentrations affect high-resolution flow cytometry-based particle quantification and characterization. Increasing concentrations of submicron-sized particles (beads, liposomes, and EVs) were measured to identify coincidence and swarm effects, caused by the concurrent presence of multiple particles in the measuring spot. As a result, we demonstrate that analysis of highly concentrated samples resulted in an underestimation of the number of particles and an interdependent overestimation of light scattering and fluorescence signals. On the basis of this knowledge, and by varying nozzle size and sheath pressure, we developed a strategy for high-resolution flow cytometric sorting of submicron-sized particles. Using the adapted sort settings, subsets of EVs differentially labeled with two fluorescent antibodies could be sorted to high purity. Moreover, sufficient numbers of EVs could be sorted for subsequent analysis by western blotting. In conclusion, swarm effects that occur when measuring high particle concentrations severely hamper EV quantification and characterization. These effects can be easily overlooked without including proper controls (e.g., sample dilution series) or tools (e.g., oscilloscope). Providing that the event rate is well controlled, the sorting strategy we propose here indicates that high-resolution flow cytometric sorting of different EV subsets is feasible.


Assuntos
Vesículas Extracelulares/fisiologia , Citometria de Fluxo/métodos , Animais , Células Cultivadas , Mastócitos/fisiologia , Camundongos Endogâmicos C57BL
2.
Cytometry A ; 75(10): 848-53, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19739088

RESUMO

Circulating adult CD34(+)VEGFR2(+) endothelial progenitor cells (EPCs) have been shown to differentiate into endothelial cells, thus contributing to vascular homeostasis. Furthermore, a subset of circulating CD14(+) monocytes coexpresses CD16 together with the angiopoietin receptor Tie2 and has been functionally implicated in tumor angiogenesis. However, clinically applicable protocols for flow cytometric quantification of EPCs and Tie2(+) monocytes in peripheral blood and a consensus on reference values remain elusive. The number of Tie2(+)CD14(+)CD16(mid) angiogenic monocytes and CD34(+)VEGFR2(+)CD45(low/-) EPCs was assessed in the peripheral venous blood of patients with stable coronary artery disease by three-color flow cytometry using specific monoclonal antibodies conjugated to PerCP, PE, PE-Cy7, APC, and APC-Cy7. Scatter multigating with exclusion of dead cells was performed to dissect complex mononuclear cell populations. This analysis was further refined by matching bright fluorochromes (PE-Cy7, PE, APC) with dimly expressed markers (CD34, VEGFR2, Tie2), by automatic compensation for minimizing fluorescence spillover and by using fluorescence-minus-one (FMO) controls to determine positive/negative boundaries. Presuming a Gaussian distribution, we obtained average values (mean +/- SD) of 1.45 +/- 1.29% for Tie2(+)CD14(+)CD16(mid) monocytes (n = 11, range: 0.12-3.64%) and 0.019 +/- 0.013% for CD34(+)VEGFR2(+)CD45(low/-) EPCs (n = 17, range: 0.003-0.042%). The intra- and inter-assay variability was 1.6% and 4.5%, respectively. We have optimized a fast and sensitive assay for the flow cytometric quantification of circulating angiogenic monocytes and EPCs in cardiovascular medicine. This protocol may represent a basis for standardized analysis and monitoring of these cell subsets to define their normal range and prognostic/diagnostic value in clinical use.


Assuntos
Células Endoteliais/citologia , Citometria de Fluxo/métodos , Monócitos/citologia , Neovascularização Fisiológica , Células-Tronco/citologia , Idoso , Células Endoteliais/metabolismo , Feminino , Humanos , Antígenos Comuns de Leucócito/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Receptor TIE-2/metabolismo , Receptores de IgG/metabolismo , Células-Tronco/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...