Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740729

RESUMO

This research aims to enhance the understanding of the acoustic processes occurring during sonotubometry, a method used to assess the Eustachian tube (ET) function. Recent advancements in digital signal processing enable a more comprehensive data analysis. In this project, a silicone model of the ET was developed to systematically study the existing noise and sound sources. These measurements were then compared with recordings from human subjects. Three distinct 'noise sources' were identified, which can influence the assessment of the ET opening using transmission measurements of the imposed signal: sound leakage from the speaker, a clicking noise at the initiation of ET opening, and rumbling/swallowing noise. Through spectral analysis, it was also possible to ascertain the spectral and temporal occurrence of these sound and noise types. The silicone model exhibited remarkable similarity to the healthy human ET, making it a robust experimental model for investigating the acoustics of sonotubometry. The findings underscore the significance of delving deeper into the analysed sound, as the noise occurring during sonotubometry can be easily misconstrued as an actual ET opening. Particularly, careful consideration is warranted when evaluating data involving clicking and swallowing noise.

2.
Ann Biomed Eng ; 51(10): 2229-2236, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37314663

RESUMO

Mechanical loading has been described as having the potential to affect bone growth. In order to experimentally study the potential clinical applications of mechanical loading as a novel treatment to locally modulate bone growth, there is a need to develop a portable mechanical loading device enabling studies in small bones. Existing devices are bulky and challenging to transfer within and between laboratories and animal facilities, and they do not offer user-friendly mechanical testing across both ex vivo cultured small bones and in vivo animal models. To address this, we developed a portable loading device comprised of a linear actuator fixed within a stainless-steel frame equipped with suitable structures and interfaces. The actuator, along with the supplied control system, can achieve high-precision force control within the desired force and frequency range, allowing various load application scenarios. To validate the functionality of this new device, proof-of-concept studies were performed in ex vivo cultured rat bones of varying sizes. First, very small fetal metatarsal bones were microdissected and exposed to 0.4 N loading applied at 0.77 Hz for 30 s. When bone lengths were measured after 5 days in culture, loaded bones had grown less than unloaded controls (p < 0.05). Next, fetal rat femur bones were periodically exposed to 0.4 N loading at 0.77 Hz while being cultured ex vivo for 12 days. Interestingly, this loading regimen had the opposite effect on bone growth, i.e., loaded femur bones grew significantly more than unloaded controls (p < 0.001). These findings suggest that complex relationships between longitudinal bone growth and mechanical loading can be determined using this device. We conclude that our new portable mechanical loading device allows experimental studies in small bones of varying sizes, which may facilitate further preclinical studies exploring the potential clinical applications of mechanical loading.


Assuntos
Fenômenos Mecânicos , Ossos do Metatarso , Ratos , Animais , Desenvolvimento Ósseo , Feto , Suporte de Carga , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...