Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Learn Health Syst ; 7(3): e10352, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37448456

RESUMO

Over the past 4 years, the authors have participated as members of the Mobilizing Computable Biomedical Knowledge Technical Infrastructure working group and focused on conceptualizing the infrastructure required to use computable biomedical knowledge. Here, we summarize our thoughts and lay the foundation for future work in the development of CBK infrastructure, including: explaining the difference between computable knowledge and data, and contextualizing the conversation with the Learning Health Systems and the FAIR principles. Specifically, we provide three guiding principles to advance the development of CBK infrastructure: (a) Promote interoperable systems for data and knowledge to be findable, accessible, interoperable, and reusable. (b) Enable stable, trustworthy knowledge representations that are human and machine readable. (c) Computable knowledge resources should, when possible, be open. Standards supporting computable knowledge infrastructures must be open.

3.
F1000Res ; 8: 1430, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32760576

RESUMO

Biomedical translational research can benefit from informatics system that support the confidentiality, integrity and accessibility of data.  Such systems require functional capabilities for researchers to securely submit data to designated biomedical repositories. Reusability of data is enhanced by the availability functional capabilities that ensure confidentiality, integrity and access of data. A biomedical research system was developed by combining common data element methodology with a service-oriented architecture to support multiple disease focused research programs. Seven service modules are integrated together to provide a collaborative and extensible web-based environment. The modules - Data Dictionary, Account Management, Query Tool, Protocol and Form Research Management System, Meta Study, Repository Manager and globally unique identifier (GUID) facilitate the management of research protocols, submitting and curating data (clinical, imaging, and derived genomics) within the associated data repositories. No personally identifiable information is stored within the repositories. Data is made findable by use of digital object identifiers that are associated with the research studies. Reuse of data is possible by searching through volumes of aggregated research data across multiple studies. The application of common data element(s) methodology for development of content-based repositories leads to increase in data interoperability that can further hypothesis-based biomedical research.


Assuntos
Pesquisa Biomédica , Biologia Computacional , Lesões Encefálicas Traumáticas , Oftalmopatias Hereditárias , Genômica , Humanos , Doença de Parkinson , Doenças Raras
4.
F1000Res ; 7: 1353, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356367

RESUMO

Genomics and molecular imaging, along with clinical and translational research have transformed biomedical science into a data-intensive scientific endeavor. For researchers to benefit from Big Data sets, developing long-term biomedical digital data preservation strategy is very important. In this opinion article, we discuss specific actions that researchers and institutions can take to make research data a continued resource even after research projects have reached the end of their lifecycle. The actions involve utilizing an Open Archival Information System model comprised of six functional entities: Ingest, Access, Data Management, Archival Storage, Administration and Preservation Planning. We believe that involvement of data stewards early in the digital data life-cycle management process can significantly contribute towards long term preservation of biomedical data. Developing data collection strategies consistent with institutional policies, and encouraging the use of common data elements in clinical research, patient registries and other human subject research can be advantageous for data sharing and integration purposes. Specifically, data stewards at the onset of research program should engage with established repositories and curators to develop data sustainability plans for research data. Placing equal importance on the requirements for initial activities (e.g., collection, processing, storage) with subsequent activities (data analysis, sharing) can improve data quality, provide traceability and support reproducibility. Preparing and tracking data provenance, using common data elements and biomedical ontologies are important for standardizing the data description, making the interpretation and reuse of data easier. The Big Data biomedical community requires scalable platform that can support the diversity and complexity of data ingest modes (e.g. machine, software or human entry modes). Secure virtual workspaces to integrate and manipulate data, with shared software programs (e.g., bioinformatics tools), can facilitate the FAIR (Findable, Accessible, Interoperable and Reusable) use of data for near- and long-term research needs.


Assuntos
Pesquisa Biomédica , Ontologias Biológicas , Humanos , Disseminação de Informação , Reprodutibilidade dos Testes , Software
5.
PLoS Comput Biol ; 14(6): e1006144, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29902176

RESUMO

Biomedical research has become a digital data-intensive endeavor, relying on secure and scalable computing, storage, and network infrastructure, which has traditionally been purchased, supported, and maintained locally. For certain types of biomedical applications, cloud computing has emerged as an alternative to locally maintained traditional computing approaches. Cloud computing offers users pay-as-you-go access to services such as hardware infrastructure, platforms, and software for solving common biomedical computational problems. Cloud computing services offer secure on-demand storage and analysis and are differentiated from traditional high-performance computing by their rapid availability and scalability of services. As such, cloud services are engineered to address big data problems and enhance the likelihood of data and analytics sharing, reproducibility, and reuse. Here, we provide an introductory perspective on cloud computing to help the reader determine its value to their own research.


Assuntos
Pesquisa Biomédica/métodos , Computação em Nuvem , Biologia Computacional/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...