Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892285

RESUMO

The diterpene cafestol represents the most potent cholesterol-elevating compound known in the human diet, being responsible for more than 80% of the effect of coffee on serum lipids, with a mechanism still not fully clarified. In the present study, the interaction of cafestol and 16-O-methylcafestol with the stabilized ligand-binding domain (LBD) of the Farnesoid X Receptor was evaluated by fluorescence and circular dichroism. Fluorescence quenching was observed with both cafestol and 16-O-methylcafestol due to an interaction occurring in the close environment of the tryptophan W454 residue of the protein, as confirmed by docking and molecular dynamics. A conformational change of the protein was also observed by circular dichroism, particularly for cafestol. These results provide evidence at the molecular level of the interactions of FXR with the coffee diterpenes, confirming that cafestol can act as an agonist of FXR, causing an enhancement of the cholesterol level in blood serum.


Assuntos
Colesterol , Café , Diterpenos , Receptores Citoplasmáticos e Nucleares , Diterpenos/farmacologia , Diterpenos/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/agonistas , Colesterol/metabolismo , Humanos , Café/química , Simulação de Acoplamento Molecular , Ligação Proteica , Simulação de Dinâmica Molecular , Dicroísmo Circular
2.
AoB Plants ; 16(2): plae004, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38384341

RESUMO

Mozambique does not have a tradition of farming Coffea arabica or Coffea canephora, the two species that dominate the worldwide coffee market. However, native coffee plants have been growing spontaneously and in some cases cultivated in the Ibo and Quirimba islands in the north of the country and Inhambane province in the south. Historically there has been confusion over the precise taxonomic classification of these indigenous coffee plants, with different botanists identifying the species as C. racemosa, C. zanguebariae or various synonyms of both. The present research aims to clarify the subject and provide new information on these little-described coffee species which may prove valuable as new breeding material for future cultivars, something that is sorely needed to face the present and future challenges of coffee production. Leaf samples were collected from 40 accessions from Ibo Island, Quirimba Island and Inhambane province. The samples were sequenced by whole-genome technology and WGS reads were filtered to identify relevant SNP variants. Diversity among the samples was assessed by PCA, and a phylogenetic tree including several Coffea species was built using additional data available in public databases. Experimental data confirm the presence of C. zanguebariae as the only coffee species present in both Ibo and Quirimba Islands, while it appears that C. racemosa is exclusive to the southern Inhambane province. The present research provides the most detailed analysis so far on the genetic identity of the traditional Mozambican coffee crops. This is the prerequisite for undertaking further scientific studies on these almost unknown coffee species and for starting agronomic development programs for the economic revival of Ibo and Quirimba islands based on coffee cultivation. Furthermore, these species could provide much-needed genetic material for the breeding of new hybrids with the two main commercial coffee species.

3.
Nat Commun ; 15(1): 463, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263403

RESUMO

In order to better understand the mechanisms generating genetic diversity in the recent allotetraploid species Coffea arabica, here we present a chromosome-level assembly obtained with long read technology. Two genomic compartments with different structural and functional properties are identified in the two homoeologous genomes. The resequencing data from a large set of accessions reveals low intraspecific diversity in the center of origin of the species. Across a limited number of genomic regions, diversity increases in some cultivated genotypes to levels similar to those observed within one of the progenitor species, Coffea canephora, presumably as a consequence of introgressions deriving from the so-called Timor hybrid. It also reveals that, in addition to few, early-occurring exchanges between homoeologous chromosomes, there are numerous recent chromosomal aberrations including aneuploidies, deletions, duplications and exchanges. These events are still polymorphic in the germplasm and could represent a fundamental source of genetic variation in such a lowly variable species.


Assuntos
Coffea , Aberrações Cromossômicas , Aneuploidia , Genômica , Cromossomos
4.
Sci Rep ; 13(1): 16374, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773195

RESUMO

Coffee extraction involves many complex physical and transport processes extremely difficult to model. Among the many factors that will affect the final quality of coffee, the microstructure of the coffee matrix is one of the most critical ones. In this article, we use X-ray micro-computed (microCT) technique to capture the microscopic details of coffee matrices at particle-level and perform fluid dynamics simulation based on the smoothed particle hydrodynamics method (SPH) with the 3D reconstructured data. Information like flow permeability and tortuosity of the matrices can be therefore obtained from our simulation. We found that inertial effects can be quite significant at the normal pressure gradient conditions typical for espresso brewing, and can provide an explanation for the inconsistency of permeability measurements seen in the literature. Several types of coffee powder are further examined, revealing their distinct microscopic details and resulting flow features. By comparing the microCT images of pre- and post-extraction coffee matrices, it is found that a decreasing porosity profile (from the bottom-outlet to the top-inlet) always develops after extraction. This counterintuitive phenomenon can be explained using a pressure-dependent erosion model proposed in our prior work. Our results reveal not only some important hydrodynamic mechanisms of coffee extraction, but also show that microCT scan can provide useful microscopic details for coffee extraction modelling. MicroCT scan establishes the basis for a data-driven numerical framework to explore the link between coffee powder microstructure and extraction dynamics, which is the prerequisite to study the time evolution of both volatile and non-volatile organic compounds and then the flavour profile of coffee brews.

5.
J Mass Spectrom ; 58(10): e4970, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37604679

RESUMO

The present study aims to both identify and quantify trans-sinapoylquinic acid (SiQA) regioisomers in green coffee by combined UHPLC-ESI-QqTOF-MS/MS and UHPLC-ESI-QqQ-MS/MS methods. Among the various mono-acyl chlorogenic acids found in green coffee, SiQA regioisomers are the least studied despite having been indicated as unique phytochemical markers of Coffea canephora (known as Robusta). The lack of commercially available authentic standards has been bypassed by resorting to the advantages offered by high-resolution LC-MS as far as the identification is concerned. SiQA regioisomers have been identified in several samples of Robusta and Coffea arabica (known as Arabica) commercial lots from different geographical origin and, for the first time, in different samples of coffee wild species (Coffea liberica and Coffea pseudozanguebariae). Quantification (total SiQA ranging from 3 to 5 mg/100 g) let to reconsider these chlorogenic acids as unique phytochemical markers of Robusta being present in the same quantity and distribution in C. liberica as well. Gardeniae Fructus samples (fruits of Gardenia jasminoides) have additionally been characterized as this matrix is recognized as one of the few naturally occurring SiQA sources. The SiQA regioisomer content (total SiQA about 80 mg/100 mg) fully supports the proposal to use this matrix as a surrogate standard for further studies.


Assuntos
Coffea , Café , Cromatografia Líquida/métodos , Café/química , Espectrometria de Massas em Tandem , Sementes/química , Coffea/química , Ácido Clorogênico/análise , Compostos Fitoquímicos/análise
6.
J Sci Food Agric ; 103(9): 4692-4703, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36905183

RESUMO

BACKGROUND: The effects of the environment and genotype in the coffee bean chemical composition were studied using nine trials covering an altitudinal gradient [600-1100 m above sea level (a.s.l.)] with three genotypes of Coffea arabica in the northwest mountainous region of Vietnam. The impacts of the climatic conditions on bean physical characteristics and chemical composition were assessed. RESULTS: We showed that the environment had a significant effect on the bean density and on all bean chemical compounds. The environment effect was stronger than the genotype and genotype-environment interaction effects for cafestol, kahweol, arachidic (C20:0), behenic acid (C22:0), 2,3-butanediol, 2-methyl-2-buten-1-ol, benzaldehyde, benzene ethanol, butyrolactone, decane, dodecane, ethanol, pentanoic acid, and phenylacetaldehyde bean content. A 2 °C increase in temperature had more influence on bean chemical compounds than a 100 mm increase in soil water content. Temperature was positively correlated with lipids and volatile compounds. With an innovative method using iterative moving averages, we showed that correlation of temperature, vapour pressure deficit (VPD) and rainfall with lipids and volatiles was higher between the 10th and 20th weeks after flowering highlighting this period as crucial for the synthesis of these chemicals. Genotype specific responses were evidenced and could be considered in future breeding programmes to maintain coffee beverage quality in the midst of climate change. CONCLUSION: This first study of the effect of the genotype-environment interactions on chemical compounds enhances our understanding of the sensitivity of coffee quality to genotype environment interactions during bean development. This work addresses the growing concern of the effect of climate change on speciality crops and more specifically coffee. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Coffea , Interação Gene-Ambiente , Coffea/química , Melhoramento Vegetal , Sementes/química , Lipídeos/análise
7.
Sensors (Basel) ; 22(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36560241

RESUMO

Green coffee beans are particularly rich in chlorogenic acids (CGAs), and their identification and quantification are usually performed by HPLC, coupled with mass spectrometry (LC-MS). Although there are a few examples of molecularly imprinted polymers (MIPs) for chlorogenic acid (5-CQA) recognition present in the literature, none of them are based on optical fluorescence, which is very interesting given its great sensitivity. In the present manuscript, fluorescent polymeric imprinted nanoparticles were synthetized following the non-covalent approach using hydrogenated 5-O-caffeoylquinic acid (H-5-CQA) as the template. The capability of the polymer to bind 5-CQA was evaluated by HPLC and fluorescence. A real sample of coffee extract was also analyzed to verify the selectivity of the polymer. Polymer fMIP01, containing 4-vinylpyridine and a naphtalimide derivative as monomers, showed a good response to the fluorescence quenching in the range 39 µM-80 mM. In the real sample, fMIP01 was able to selectively bind 5-CQA, while caffeine was not recognized. To demonstrate this, there is a promising system that can be exploited in the design of an optical sensor for 5-CQA detection. Polymer fMIP01 was immobilized by physical entrapment on a functionalized glass surface, showing a quenching of fluorescence with an increase of the CGA concentration between 156 µM and 40 mM.


Assuntos
Ácido Clorogênico , Nanopartículas , Cafeína , Cromatografia Líquida de Alta Pressão , Polímeros/química
8.
Foods ; 11(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36230109

RESUMO

Green coffee (Coffee arabica and Coffee robusta) is one of the most commonly traded goods globally. Their beans are enriched with polyphenols and numerous health benefits are associated with their consumption. The main aim of this work was to develop a new and fast analytical HPLC-MS/MS method to simultaneously determine six flavonoid polyphenolic compounds (quercetin, rutin, isorhamnetin, quercetin-3-glucouronide, hyperoside, and quercitrin) in 22 green coffee samples from six different geographical origins (Ethiopia, Brazil, Guatemala, Nicaragua, India and Colombia). In addition, by adjusting pH, temperature, solvent type, and extraction duration, several extraction methods such as acidic and alkaline hydrolysis, and extraction without hydrolysis were evaluated. The optimal extraction procedure in terms of recovery percentages (78.67-94.09%)was acidic hydrolysis at pH 2, extraction temperature of 60 °C, extraction solvent of 70% ethanol, and extraction duration of 1.5 h. Hyperoside (878-75 µg/kg) was the most abundant compound followed by quercitrin (408-38 µg/kg), quercetin (300-36 µg/kg), rutin (238-21 µg/kg), and quercetin-3-glucouronide (225-7 µg/kg), while isorhamnetin (34-3 µg/kg) showed the lowest amount. Overall, green coffee beans are rich in flavonoid polyphenolic compounds and could be used as part of a healthy diet.

9.
J Agric Food Chem ; 70(36): 11412-11418, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36039915

RESUMO

The Rio defect is a coffee off-flavor associated to unpleasant medicinal, phenolic, and iodine-like notes. 2,4,6-Trichloroanisole (TCA) is the main marker of this alteration. A new approach for TCA detection in green coffee beans was evaluated using chemical ionization time-of-flight mass spectrometry and employing a Vocus ion source and ion-molecule reactor (IMR). The sample set consisted of 22 green Coffea arabica from different geographical origins, four of which presented the Rio defect according to an expert cup-tasting panel. Vocus CI-MS was able to perform TCA detection in 3 s, with a sensitivity comparable to that of a sensory panel and showed remarkably good correlation (R2 ≥ 0.9997) with SPME-GC-MS measurements carried out on coffee headspace and hydro-alcoholic extracts. The results demonstrate how the introduction of new quick and sensitive analytical tools could help provide a more comprehensive picture of the Rio coffee off-flavor.


Assuntos
Coffea , Anisóis , Coffea/química , Cromatografia Gasosa-Espectrometria de Massas , Sementes/química
10.
Curr Res Food Sci ; 5: 336-344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198992

RESUMO

Grape aroma precursors have been extensively studied and many glycosidically-bound terpenols and C13-norisoprenoids were identified. Instead, these compounds were scarcely investigated in green Coffea arabica where just few glycosidic compounds were identified so far. By resorting to knowledge of glycoside aroma precursors in grape and the possibility to identify their structures using a high-resolution mass spectrometry database constructed for grape metabolomics, targeted investigation of glycoside precursors in green C. arabica from different geographical origins, was performed. High linalool hexose-pentose was found in all the investigated samples and hexosyl-pentoside derivatives of geraniol, linalooloxide and another linalool isomer, were identified. Moreover, two putative norisoprenoid glycosides were characterized. ß-Damascenone was detected in the volatile fraction of the examined C. arabica coffees only after acid addition, however no signals of ß-damascenone glycosides, were found. Findings suggests that this important aroma compound could form by hydrolysis and dehydration of a putative 3-hydroxy-ß-damascone glycoside precursor identified for the first time in coffee. Aglycones released during the roasting process contribute to enrich the coffee aroma with their positive sensory notes and the identification of these glycosides can contribute to disclose the coffee biology including biochemical, physiological and genetic aspects.

11.
Food Chem ; 372: 131188, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624779

RESUMO

The present study assessed the nutritional composition of coffee silverskin (CSS) obtained from arabica roasted coffee. Following validated analytical methods, CSS resulted to be a high source of proteins (14.2 g/100 g) and dietary fibers (51.5 g/100 g). Moreover, the mineral analysis revealed high contents of calcium (1.1 g/100 g) and potassium (1.0 g/100 g). To date, this study provided the widest mineral profile of CSS with 30 minerals targeted including 23 microminerals with high levels of iron (238.0 mg/kg), manganese (46.7 mg/kg), copper (37.9 mg/kg), and zinc (31.9 mg/kg). Moreover, vitamins B2 (0.18-0.2 mg/kg) and B3 (2.5-3.1 mg/kg) were studied and reported for the first time in CSS. ß-sitosterol (77.1 mg/kg), campesterol, stigmasterol, and Δ5-avenasterol, were also observed from the phytosterol analysis of CSS with a total level of 98.4 mg/kg. This rich nutritional profile highlights the potential values of CSS for innovative reuses in bioactive ingredients development.


Assuntos
Fitosteróis , Complexo Vitamínico B , Café , Minerais , Estigmasterol
12.
Biomolecules ; 11(11)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34827569

RESUMO

Not all the coffee produced goes to the roasting stage, because non-compliant green coffee beans are usually discarded by roasters and the silverskin of the coffee is usually removed and discarded. In the present work, non-compliant green coffee beans and coffee silverskins were fully characterized from a chemical point of view. In addition, enzyme-assisted extraction was applied to recover a fraction rich in proteins and polyphenols, tested for antimicrobial, antityrosinase, and antioxidant activities. Non-compliant green coffee beans showed higher amounts of polyphenols, flavanols, flavonoids, and caffeine than coffee silverskins (which were richer in tannins). The enzymatic extraction of non-compliant coffee green beans produced extracts with a good protein content and with a consistent quantity of polyphenols. The extract showed antioxidant, antityrosinase, and antimicrobial activity, thus representing a promising strategy to recover defective green coffee beans. The antioxidant and antimicrobial activity of coffee silver skins is lower than that of non-compliant coffee green beans extracts, while the antityrosinase activity is comparable.


Assuntos
Coffea , Antioxidantes , Fenóis , Polifenóis
13.
Antioxidants (Basel) ; 10(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374269

RESUMO

The enzyme CYP1A2 is responsible for the metabolism of numerous antioxidants in the body, including caffeine, which is transformed into paraxanthine, its main primary metabolite. Both molecules are known for their antioxidant and pro-oxidant characteristics, and the paraxanthine-to-caffeine molar ratio is a widely accepted metric for CYP1A2 phenotyping, to optimize dose-response effects in individual patients. We developed a simple, cheap and fast electrochemical based method for the simultaneous quantification of paraxanthine and caffeine in human saliva, by differential pulse voltammetry, using an anodically pretreated glassy carbon electrode. Cyclic voltammetry experiments revealed for the first time that the oxidation of paraxanthine is diffusion controlled with an irreversible peak at ca. +1.24 V (vs. Ag/AgCl) in a 0.1 M H2SO4 solution, and that the mechanism occurs via the transfer of two electrons and two protons. The simultaneous quantification of paraxanthine and caffeine was demonstrated in 0.1 M H2SO4 and spiked human saliva samples. In the latter case, limits of detection of 2.89 µM for paraxanthine and 5.80 µM for caffeine were obtained, respectively. The sensor is reliable, providing a relative standard deviation within 7% (n = 6). Potential applicability of the sensing platform was demonstrated by running a small scale trial on five healthy volunteers, with simultaneous quantification by differential pulse voltammetry (DPV) of paraxanthine and caffeine in saliva samples collected at 1, 3 and 6 h postdose administration. The results were validated by ultra-high pressure liquid chromatography and shown to have a high correlation factor (r = 0.994).

14.
Foods ; 9(10)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092071

RESUMO

Losses of volatile compounds during baking are expected due to their evaporation at the high temperatures of the oven, which can lead to a decrease in the aroma intensity of the final product, which is crucial for gluten-free breads that are known for their weak aroma. Volatiles from fermentation and lipids oxidation are transferred from crumb to crust, and they flow out to the air together with Maillard and caramelisation compounds from the crust. In this study, the release to the oven of volatile compounds from five gluten-free breads (quinoa, teff and rice flours, and corn and wheat starches) and wheat bread during baking and toasting was measured in real-time using proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS). Baking showed different volatile release patterns that are described by bell-shaped curves, plateaus and exponential growths. Flour-based breads had the higher overall volatile release during baking, but also high ratios in the final bread, while starch-based breads showed high pyrazine releases due to moisture losses. Meanwhile, toasting promoted the release of volatile compounds from the bread matrix, but also the additional generation of volatiles from Maillard reaction and caramelisation. Interestingly, gluten-free breads presented higher losses of volatiles during baking than wheat bread, which could partially explain their weaker aroma.

15.
J Mass Spectrom ; 55(11): e4634, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32776626

RESUMO

Chlorogenic acids (CGAs) are a large class of esters formed between quinic acid and hydroxycinnamic acids. They are present in coffee as a complex mixture of positional and geometric isomers, where caffeoylquinic acids (CQAs) are the most abundant, followed by dicaffeoylquinic acids (diCQAs), feruloylquinic acids (FQAs), and p-coumaroylquinic acids (p-CoQAs). The aim of this work is to develop a new reliable and fast liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous identification and quantification of total amount of 11 CGAs in roasted coffee. Regarding sample preparation step, aqueous methanol and 100% aqueous ultrasonic extractions were evaluated. For the filtration Step 4, different membranes were tested, in order to fill the void of complete evaluation of extractables recovery when using different membranes, highlighting an incomplete recovery when using nylon filters. An LC/electrospray ionization (ESI)-MS/MS method was developed and validated following the European rules in terms of specificity, linearity, concentration range, limit of detection (LOD) and limit of quantification (LOQ), precision, and trueness, in order to obtain a useful quality control tool for roasted coffee. The method was applied for quantification of CGAs of a roasted coffee sample previously characterized by an interlaboratory circuit (LVU), and results were compared with the quantitation of CGAs via UHPLC-DAD. The quantitative results were expressed as 5-CQA equivalents, and the validation of this approach opens the way to reliable, cheap, and environmental-friendly tools for quality control purposes.

16.
J Mass Spectrom ; 55(11): e4636, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32767433

RESUMO

Coffee diterpenes are the main constituents of the coffee oil unsaponifiable fraction. The three most important diterpenes are cafestol, kahweol, and 16-O-methylcafestol (16-OMC), and they are produced, except for cafestol, only by plants of the Coffea genus. Recently, in addition to these three major diterpenes, another 16-O-methylated diterpene (16-O-methylkahweol: 16-OMK) has been identified and quantified, for the first time, in Robusta coffee. For many years, 16-OMC has been considered present exclusively in Robusta, and so it has been reputed an excellent authenticity marker for the presence of Robusta in coffee products. For its quantification, nuclear magnetic resonance (NMR) has proved very useful when compared with other methods. Quite recently, the detection of very low levels of the two 16-O-methylated diterpenes (16-OMD) 16-OMC and 16-OMK in roasted Arabica was reported. This finding makes the use of NMR methods in 16-OMD quantification in Arabica coffee particularly challenging in view of both the trace amounts of 16-OMD and the impossibility to discriminate between 16-OMC and 16-OMK. The ultra-high performance liquid chromatography mass spectrometry (UHPLC-MS) method, already used to detect 16-OMC and 16-OMK in Arabica roasted coffee, is then more suitable for quantitative analyses. Up to now however, no quantification of coffee 16-OMD via ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) has been carried out; this largely stimulated the present study. For the first time, a simple procedure for the quantitative detection of 16-OMD in Arabica coffee has been developed, and as far as 16-OMC is concerned, fully validated in terms of specificity, linearity, concentration range, limit of detection (LOD), limit of quantification (LOQ), and repeatability following the criteria specified in the EU Commission Decision 2002/675/EC. This method proved to be very specific and sensitive. In order to avoid the chemical complexity generated by the roasting process, the method was optimized and validated on several green Arabica samples from different geographical origins.


Assuntos
Coffea/química , Café/química , Diterpenos/análise , Cromatografia Líquida de Alta Pressão , Metilação , Sementes/química , Espectrometria de Massas em Tandem
17.
Food Chem ; 329: 127129, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32497844

RESUMO

The acknowledged marker of Robusta coffee, 16-O-methylcafestol (16-OMC), can be quantified by NMR as a mixture with 16-O-methylkahweol (16-OMK), which accounts for approximately 10% of the mixture. In the present study, we detected and quantified 16-O-methylated diterpenes (16-OMD) in 248 samples of green Coffea arabica beans by NMR. We did not observe any differences between genotypes introgressed by chromosomal fragments of Robusta and non-introgressed genotypes. Environmental effects suggesting a possible protective role of 16-OMD for adaptation, as well as genotypic effects that support a high heritability of this trait were observed. Altogether, our data confirmed the presence of 16-OMD in green Arabica at a level approximately 1.5% that of a typical Robusta, endorsing the validity of 16-OMD as a marker for the presence of Robusta.


Assuntos
Coffea/genética , Diterpenos/química , Coffea/química , Café/química , Café/genética , Cor , Genótipo , Espectroscopia de Ressonância Magnética , Metilação , Estrutura Molecular , Sementes/química , Sementes/genética
18.
J Mass Spectrom ; 55(11): e4519, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32368836

RESUMO

Spent coffee ground (SCG) is the remaining residue produced after extraction of coffee, and it is considered a source of unextracted bioactive compounds. For this, in the latest years, the attention has been focused to innovative reuses that can exploit the potentiality of SCG. Unfortunately, the content of bioactive compounds has not been thoroughly studied yet, and the major of publication has investigated the caffeine and chlorogenic acids levels, total polyphenol contents, and total flavonoid content. Hence, these approaches have determined only an estimation of flavonoids and polyphenols content and lack on single polyphenols investigation. Therefore, the objective of the current work was to provide a deep characterization of bioactive compounds in SCG. For this purpose, a new analytical method for the quantification of 30 molecules, including caffeine, chlorogenic acids, phenolic acids, flavonoids, and secoiridoids, has been developed using high-performance liquid chromatography tandem mass spectrometry. Moreover, several extraction procedures, that is, liquid-solid extraction assisted and not by ultrasounds, testing diverse solvents, were evaluated. Liquid-solid extraction assisted by sonication, with water/ethanol (30/70, v/v), resulted the best in terms of total bioactive compounds, and, once validated, the new analytical method was applied to five different espresso SCG samples. Data showed that caffeine (means: 1193.886 ± 57.307 mg kg-1 ) and chlorogenic acids (means of total CQAs: 1705.656 ± 88.694 mg kg-1 ) were the most abundant compounds in all SCG samples followed by phenolic acids such as caffeic, ferulic, gallic, p-coumaric, syringic, trans-cinnamic, and vanillic acid. Moreover, some flavonoids, that is, rutin, cyanidin 3-glucoside, and quercetin, occurred in almost all samples. This work provided a deepened characterization of bioactive compounds in SCG and can contribute to develop new strategies of reuses.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Café/química , Espectrometria de Massas em Tandem/métodos , Cafeína/análise , Ácido Clorogênico/análise , Coffea/química , Flavonoides/análise , Iridoides/análise , Fenóis/análise , Polifenóis/análise
19.
Food Chem ; 325: 126924, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32387932

RESUMO

Green coffee, the raw material of roasted coffee and coffee beverages, is one of the most widely traded commodities worldwide. There is a dearth of studies on its content in phytoestrogens such as isoflavones and lignans. Previously, we developed an efficient method for the simultaneous quantification of 6 isoflavones (daidzin, genistin, daidzein, genistein, formononetin and biochanin A) and 3 lignans (secoisolariciresinol, matairesinol and lariciresinol) in green coffee by using HPLC-MS/MS. Several extraction processes were evaluated and the best performing, base hydrolysis followed by enzymatic digestion, was validated and used to analyse 25 different coffee samples, 1 Coffea canephora and 24 Coffea arabica, from different countries. Lignans (total content: 286.5-8131.8 µg kg-1) were found in higher concentration than isoflavones (total content: 3.4-300.0 µg kg-1) and the most abundant were secoisolariciresinol (172.6-5714.1 µg kg-1) and lariciresinol (113.9-2417.7 µg kg-1). Notably, the Ethiopian coffee samples contained the highest levels of these compounds.

20.
Food Res Int ; 133: 109128, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32466943

RESUMO

The research of value-added applications for coffee silverskin (CSS) requires studies to investigate potential bioactive compounds and biological activities in CSS extracts. In this study, different ultrasound-assisted extraction (UAE) methods have been tested to extract bioactive compounds from CSS. The obtained extracts, were characterized using a new HPLC-MS/MS method to detect and quantify 30 bioactive compounds of 2 classes: alkaloids and polyphenols (including phenolic acids, flavonoids, and secoiridoids). CSS extracts obtained with ethanol/water (70:30) as extraction solvent showed the highest levels (p ≤ 0.05) of bioactive compounds (4.01 ± 0.34% w/w). High content of caffeine was observed with levels varying from 1.00% to 3.59% of dry weight of extract (dw). 18 phenolic compounds were detected in CSS extracts with caffeoylquinic acids (3-CQA, 5-CQA and 3,5-diCQA) as the most abundant polyphenols (3115.6 µg g to -5444.0 µg g-1). This study is also one of the first to characterize in-depth flavonoids in CSS revealing the levels of different flavonoids compounds such as rutin (1.63-8.70 µg g-1), quercetin (1.53-2.46 µg g-1), kaempferol (0.76-1.66 µg g-1) and quercitrin (0.15-0.51 µg g-1). Neuroprotective activity of silverskin extracts against H2O2-induced damage was evaluated for the first time suggesting for methanol and ethanol/water (70:30) extracts a potential role as protective agents against neurodegeneration due to their ability to counteract oxidative stress and maintain cell viability. Silverskin extracts were not inhibiting the growth of anyone of the bacterial species included in this study but data obtained by water extract might deserve a deeper future investigation on biofilm-related activities, such as quorum sensing or virulence factors' expression. From their composition and their evidenced biological activities, CSS extracts could represent valuable ingredients in nutraceutical formulations.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Café/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...