Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Vaccin Immunother ; 20(1): 2363068, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38860457

RESUMO

PURPOSE: To overview the recent literature regarding the relationship between COVID-19 vaccines and glycemic control. METHODS: Data were extracted from text and tables of all available articles published up to September 2023 in PubMed Database describing glucose homeostasis data in subjects exposed to COVID-19 vaccines, focusing on patients with diabetes mellitus (DM). RESULTS: It is debated if the immune system impairment observed in diabetic patients makes them susceptible to lower efficacy of vaccines, but evidence suggests a possible improvement in immune response in those with good glycemic control. Despite their proven protective role lowering infection rates and disease severity, COVID-19 vaccines can result in diabetic ketoacidosis, new-onset diabetes, or episodes of hyper- or hypoglycemia. CONCLUSIONS: Evidence with COVID-19 vaccines highlights the strong relationship existing between DM and immune system function. Clinicians should strive to achieve optimal glucose control before vaccination and promptly manage possible glucose homeostasis derangement following vaccine exposure.


Assuntos
Glicemia , Vacinas contra COVID-19 , COVID-19 , Diabetes Mellitus , Humanos , Vacinas contra COVID-19/imunologia , Glicemia/metabolismo , COVID-19/prevenção & controle , COVID-19/imunologia , Diabetes Mellitus/imunologia , Controle Glicêmico/métodos , SARS-CoV-2/imunologia , Hipoglicemia/prevenção & controle , Hipoglicemia/imunologia
2.
Antioxidants (Basel) ; 10(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466415

RESUMO

The reduction of female fertility over time is considered as a natural consequence of ovarian aging. The exact mechanism underlying this process is not fully elucidated. However, it is becoming increasingly evident that qualitative and quantitative mitochondrial genome alterations might play a relevant role. The former include mitochondrial DNA (mtDNA) damage caused by oxidative stress, the accumulation of acquired mtDNA mutations, the effects of inherited mtDNA mutations, and alterations in the mitochondrial stress response mechanism. The latter refer to alterations in the oocytes, granuolosa cells, and embryonic cells mtDNA content. The present review aims to investigate the evidence about: (1) the effect of qualitative and quantitative mtDNA alterations on female fertility, paying particular attention to those with a pathophysiology characterized by a relevant role of oxidative stress; (2) the use of oocytes, granulosa cells (GCs), embryonic cells, and peripheral blood cells mtDNA copy number as a female fertility surrogate biomarker; (3) experimental therapies tested to try to subvert the ovarian aging process with particular reference to antioxidant treatments.

3.
Front Physiol ; 11: 574761, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33312128

RESUMO

The pandemic caused by Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) has led to several concerns on male fertility. Nowadays, there are numerous unanswered questions, for example: is the virus present or not in the seminal fluid of infected subjects? Could the seminal fluid represent a way of sexual transmission for the virus? Why do men appear to be more susceptible than women? Several studies have been carried out to ascertain the presence of SARS-CoV-2 in the seminal fluid, with contrasting results; the expression of angiotensin-converting enzyme-2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) in the testes and in the male genital tract led to speculation about the possible presence of the virus in the seminal fluid. However, it was found that ACE2 and TMPRSS2, used by the virus to enter host cells, are expressed differently in certain testicle cells (stem germ cells, Leydig and Sertoli cells), yet the testicle cells in which ACE2 and TMPRSS2 molecules are simultaneously expressed are rare. This fact would suggest that the virus is not able to enter testicular cells, that it is not present in the seminal fluid and that it cannot infect male germ cells. However, the direct influence of SARS-CoV-2 on the testes is still to be evaluated, and recent results are very controversial. SARS-CoV-2 could enter the testicle using alternative paths and lead to alterations in testicular functionality. Another plausible consideration is that the COVID-19 disease could also indirectly cause alterations to testicular activity, since the fever and the cytokinic storm generated by the immune system can lead to damage of the testicular activity, consequently compromising male fertility. Although the literature provides controversial evidence, the purpose of this review is to lend a general overview about the state of the art. Despite the lack of studies, it would represent a starting point for further investigation about the effect of this coronavirus on male fertility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...