Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sci Total Environ ; 854: 158508, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36063938

RESUMO

Soil microbial communities regulate a myriad of critical biogeochemical functions in forest ecosystems. Anthropogenic disturbances in natural forests could drive major shifts in plant and microbial communities resulting in substantial biogeochemical alterations. We evaluated the effect of anthropogenic disturbances in the soils of Andean temperate forests with different levels of degradation: i) mature forest (MF), ii) secondary forest (SF), iii) degraded forest (DF), and iv) deforested site converted into a prairie (DP). We quantified total soil carbon, nitrogen and phosphorous (TC, TN, and TP), and available nutrient stocks. The soil microbial community structure (i.e., composition, diversity, and abundance) was assessed under each condition from amplicon sequence variants (ASVs) obtained via NGS-Illumina sequencing and subsequent microbiome analysis. There were no significant differences in TC, TN, and TP across the forested states (MF, SF, DF). The deforested site condition presented significantly higher soil TC, TN, and TP and the lowest C:N, C:P, and N:P ratios. The DP soil microbiome was significantly more diverse in bacteria (D' = 0.47 ± 0.04); and fungi (H' = 5.11 ± 0.33). The bacterial microbiome was dominated by Proteobacteria (45.35 ± 0.89 %), Acidobacteria (20.73 ± 1.48 %), Actinobacteria (12.59 ± 0.34 %), and Bacteroidetes (7.32 ± 0.36 %) phyla in all sites. The soil fungal community was dominated by the phyla Ascomycota (42.11 ± 0.95 %), Mortierellomycota (28.74 ± 2.25 %), Basidiomycota (24.61 ± 0.52), and Mucoromycota (2.06 ± 0.43 %). Yet, there were significant differences at the genus level across conditions. Forest to prairie conversion facilitated the introduction of exotic bacterial and fungal taxa associated with agricultural activities and livestock grazing (∼50 % of DP core microbiome composed of unique ASVs). For example, the ammonia-oxidizing bacteria community emerged as a dominant group in the DP soils, along with a reduction in the ectomycorrhizal fungi community. The surface soil microbial community was surprisingly resistant to forest degradation and did not show a clear succession along the degradation gradient, but it was strongly altered after deforestation.


Assuntos
Ascomicetos , Microbiota , Solo/química , Florestas , Bactérias , Microbiologia do Solo
2.
Repert. med. cir ; 29(1): 12-18, 2020.
Artigo em Inglês, Espanhol | COLNAL, LILACS | ID: biblio-1116549

RESUMO

El choque séptico es una patología que involucra alteraciones hemodinámicas y compromiso de la microvasculatura que derivan en una disfunción celular que conlleva a la falla orgánica múltiple propia de esta enfermedad. Los protocolos de manejo actuales se centran en la normalización de variables macrohemodinámicas y biomarcadores relacionados con la hipoxia tisular, convirtiéndose en un desafío clínico que requiere el reconocimiento temprano, el control de la infección y la optimización del estado hemodinámico del paciente. En los últimos años se ha identificado que la disfunción multiorgánica que se observa en el choque séptico se encuentra relacionada con el desarrollo de disfunción mitocondrial. Se han planteado dos posibilidades para explicar el surgimiento de esta disfunción mitocondrial, que son el convectivo e inmunometabólico. Dentro del contexto metabólico se observa que el ciclo de Krebs puede funcionar en un entorno de hipoxia mediante la fragmentación y reorientación de sus reacciones enzimáticas, permitiendo la adaptación al metabolismo intermediario a la noxa séptica.


Septic shock is a condition involving hemodynamic alterations and microvascular dysfunction which lead to cellular dysfunction which is typically linked with multiple organ failure. Current management guidelines focus in reestablishing normal macro hemodynamics and biomarkers related with tissue hypoxia. This poses a clinical challenge requiring early recognition, effective infection control and optimization of hemodynamic status in the septic patient. Over the last years multiple organ involvement in septic shock has been correlated with impairment of mitochondrial function. Convective transport and immune cell metabolism have been proposed as two possible reasons for mitochondrial dysfunction during sepsis. Within the metabolic context it is evidenced that the Krebs cycle remains operational even in hypoxic environments by means of fragmentation and reprogramming of enzyme-mediated reactions, activating intermediate metabolism adaptation mechanisms in response to a septic noxa.


Assuntos
Ciclo do Ácido Cítrico , Sepse , Choque Séptico , Hipóxia , Mitocôndrias
3.
Int J Mol Sci ; 15(2): 2359-67, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24514564

RESUMO

The current study isolated and characterized the Lip3F9 polypeptide sequence of Deschampsia antarctica Desv. (GeneBank Accession Number JX846628), which was found to be comprised of 291 base pairs and was, moreover, expressed in Pichia pastoris X-33 cells. The enzyme was secreted after 24 h of P. pastoris culture incubation and through induction with methanol. The expressed protein showed maximum lipase activity (35 U/L) with an optimal temperature of 37 °C. The lipase-expressed enzyme lost 50% of its specific activity at 25 °C, a behavior characteristic of a psychrotolerant enzyme. Recombinant enzyme activity was measured in the presence of ionic and non-ionic detergents, and a decrease in enzyme activity was detected for all concentrations of ionic and non-ionic detergents assessed.


Assuntos
Expressão Gênica , Lipase/genética , Lipase/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Pichia/genética , Traqueófitas/genética , Sequência de Aminoácidos , Sequência de Bases , Detergentes/farmacologia , Genes de Plantas , Cinética , Lipase/antagonistas & inibidores , Lipase/química , Lipólise , Dados de Sequência Molecular , Peptídeos/química , Temperatura
4.
BMC Res Notes ; 2: 207, 2009 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-19821975

RESUMO

BACKGROUND: Deschampsia antarctica shows tolerance to extreme environmental factors such as low temperature, high light intensity and an increasing UV radiation as result of the Antarctic ozone layer thinning. It is very likely that the survival of this species is due to the expression of genes that enable it to tolerate high levels of oxidative stress. On that account, we planned to clone the D. antarctica Cu/ZnSOD gene into Pichia pastoris and to characterize the heterologous protein. FINDINGS: The Copper/Zinc superoxide dismutase (Cu/ZnSOD) gene, SOD gene, was isolated from a D. antarctica by cDNA library screening. This SOD gene was cloned in the expression vector pGAPZalphaA and successfully integrated into the genome of the yeast P. pastoris SMD1168H. A constitutive expression system for the expression of the recombinant SOD protein was used. The recombinant protein was secreted into the YPD culture medium as a glycosylated protein with a 32 mg/l expression yield. The purified recombinant protein possesses a specific activity of 440 U/mg. CONCLUSION: D. antarctica Cu/ZnSOD recombinant protein was expressed in a constitutive system, and purified in a single step by means of an affinity column. The recombinant SOD was secreted to the culture medium as a glycoprotein, corresponding to approximately 13% of the total secreted protein. The recombinant protein Cu/ZnSOD maintains 60% of its activity after incubation at 40 degrees C for 30 minutes and it is stable (80% of activity) between -20 degrees C and 20 degrees C. The recombinant SOD described in this study can be used in various biotechnological applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...