Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 12(18): e70044, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39294861

RESUMO

Cancer cachexia manifests as whole body wasting, however, the precise mechanisms governing the alterations in skeletal muscle and cardiac anabolism have yet to be fully elucidated. In this study, we explored changes in anabolic processes in both skeletal and cardiac muscles in the Yoshida AH-130 ascites hepatoma model of cancer cachexia. AH-130 tumor-bearing rats experienced significant losses in body weight, skeletal muscle, and heart mass. Skeletal and cardiac muscle loss was associated with decreased ribosomal (r)RNA, and hypophosphorylation of the eukaryotic factor 4E binding protein 1. Endoplasmic reticulum stress was evident by higher activating transcription factor mRNA in skeletal muscle and growth arrest and DNA damage-inducible protein (GADD)34 mRNA in both skeletal and cardiac muscles. Tumors provoked an increase in tissue expression of interferon-γ in the heart, while an increase in interleukin-1ß mRNA was apparent in both skeletal and cardiac muscles. We conclude that compromised skeletal muscle and heart mass in the Yoshida AH-130 ascites hepatoma model involves a marked reduction translational capacity and efficiency. Furthermore, our observations suggest that endoplasmic reticulum stress and tissue production of pro-inflammatory factors may play a role in the development of skeletal and cardiac muscle wasting.


Assuntos
Caquexia , Músculo Esquelético , Miocárdio , Resposta a Proteínas não Dobradas , Animais , Caquexia/metabolismo , Caquexia/etiologia , Caquexia/patologia , Caquexia/genética , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Ratos , Miocárdio/metabolismo , Miocárdio/patologia , Ratos Wistar , Estresse do Retículo Endoplasmático , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/genética
2.
Clin Cancer Res ; 30(15): 3298-3315, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38772416

RESUMO

PURPOSE: Anti-EGFR antibodies show limited response in breast cancer, partly due to activation of compensatory pathways. Furthermore, despite the clinical success of cyclin-dependent kinase (CDK) 4/6 inhibitors in hormone receptor-positive tumors, aggressive triple-negative breast cancers (TNBC) are largely resistant due to CDK2/cyclin E expression, whereas free CDK2 inhibitors display normal tissue toxicity, limiting their therapeutic application. A cetuximab-based antibody drug conjugate (ADC) carrying a CDK inhibitor selected based on oncogene dysregulation, alongside patient subgroup stratification, may provide EGFR-targeted delivery. EXPERIMENTAL DESIGN: Expressions of G1/S-phase cell cycle regulators were evaluated alongside EGFR in breast cancer. We conjugated cetuximab with CDK inhibitor SNS-032, for specific delivery to EGFR-expressing cells. We assessed ADC internalization and its antitumor functions in vitro and in orthotopically grown basal-like/TNBC xenografts. RESULTS: Transcriptomic (6,173 primary, 27 baseline, and matched post-chemotherapy residual tumors), single-cell RNA sequencing (150,290 cells, 27 treatment-naïve tumors), and spatial transcriptomic (43 tumor sections, 22 TNBCs) analyses confirmed expression of CDK2 and its cyclin partners in basal-like/TNBCs, associated with EGFR. Spatiotemporal live-cell imaging and super-resolution confocal microscopy demonstrated ADC colocalization with late lysosomal clusters. The ADC inhibited cell cycle progression, induced cytotoxicity against high EGFR-expressing tumor cells, and bystander killing of neighboring EGFR-low tumor cells, but minimal effects on immune cells. Despite carrying a small molar fraction (1.65%) of the SNS-032 inhibitor, the ADC restricted EGFR-expressing spheroid and cell line/patient-derived xenograft tumor growth. CONCLUSIONS: Exploiting EGFR overexpression, and dysregulated cell cycle in aggressive and treatment-refractory tumors, a cetuximab-CDK inhibitor ADC may provide selective and efficacious delivery of cell cycle-targeted agents to basal-like/TNBCs, including chemotherapy-resistant residual disease.


Assuntos
Cetuximab , Receptores ErbB , Imunoconjugados , Inibidores de Proteínas Quinases , Neoplasias de Mama Triplo Negativas , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Imunoconjugados/farmacologia , Feminino , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Camundongos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Cetuximab/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proliferação de Células/efeitos dos fármacos , Quinases Ciclina-Dependentes/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA