Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 12: 1374739, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601886

RESUMO

The iron-based biomass-supported catalyst has been used for Fischer-Tropsch synthesis (FTS). However, there is no study regarding the life cycle assessment (LCA) of biomass-supported iron catalysts published in the literature. This study discusses a biomass-supported iron catalyst's LCA for the conversion of syngas into a liquid fuel product. The waste biomass is one of the source of activated carbon (AC), and it has been used as a support for the catalyst. The FTS reactions are carried out in the fixed-bed reactor at low or high temperatures. The use of promoters in the preparation of catalysts usually enhances C5+ production. In this study, the collection of precise data from on-site laboratory conditions is of utmost importance to ensure the credibility and validity of the study's outcomes. The environmental impact assessment modeling was carried out using the OpenLCA 1.10.3 software. The LCA results reveals that the synthesis process of iron-based biomass supported catalyst yields a total impact score in terms of global warming potential (GWP) of 1.235E + 01 kg CO2 equivalent. Within this process, the AC stage contributes 52% to the overall GWP, while the preparation stage for the catalyst precursor contributes 48%. The comprehensive evaluation of the iron-based biomass supported catalyst's impact score in terms of human toxicity reveals a total score of 1.98E-02 kg 1,4-dichlorobenzene (1,4-DB) equivalent.

2.
ACS Omega ; 8(2): 2173-2182, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687058

RESUMO

In the present work, TiO2/g-C3N4 nanocomposites were synthesized by using highly crystalline TiO2 nanorods/rice (NRs) and various percentages of g-C3N4 via a facile, scalable, and inexpensive pyrolysis method. The synthesized nanocomposites were characterized by various techniques, e.g., X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), N2 adsorption and desorption analysis (BET), Fourier transform infrared spectroscopy (FTIR), UV-vis diffuse reflectance spectroscopy (DRS), electrochemical impedance spectroscopy (EIS), and chronoamperometry (CA). It was found that biodiesel production by the esterification reaction can be remarkably enhanced by coupling TiO2 with g-C3N4; hereby, it was observed that with increasing percentage of g-C3N4 from 5 to 10 and 15% with respect to TiO2 NRs, the photocatalytic activity rose and the maximum photocatalytic activity with 97% conversion was observed for NC-3, i.e., 15% g-C3N4/TiO2. Moreover, the photoactivity of pristine TiO2 NR aggregates was contrasted with their nanoparticle morphology and was estimated to be slightly better. When applied for photocatalytic Congo red dye degradation, this sample showed a 91% degradation efficiency using only a very small amount of the catalyst. The high catalytic efficiency is attributed to the narrow band gap, exceptionally high surface area, and efficient charge separation properties of the prepared catalysts.

3.
Environ Sci Pollut Res Int ; 29(54): 81087-81111, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36201075

RESUMO

Noise exposure has reached an alarming degree over the years because of rapid growth in the industry, transportation, and urbanization. Therefore, it is a dire need to provide awareness of the sources and mitigation strategies of noise, and to highlight the health, and socio-economic impacts of noise. A few research studies have documented this emerging issue; however, there is no comprehensive document describing all types of noise, their impacts on living organisms, and control strategies. This review article summarizes the sources of noise; their effects on industrial workers, citizens, and animals; and the value of property in noisy areas. The plethora of literature is showing an increased level of noise in various cities of the world, which have various health consequences such as high blood pressure, insomnia, nausea, heart attack, exhaustion, dizziness, headache, and triggered hearing loss. Apart from humans, noise also affects animal habitat, preying, and reproduction ability; increases heart rate and hearing loss to even death and loss in property value; and impairs the hospital environment. Finally, we have discussed the possible strategies to mitigate the noise problem, policy statements, and regulations to be followed, with future research directions based on the identified research gaps.


Assuntos
Ruído , Urbanização , Animais , Humanos , Ruído/efeitos adversos , Cidades , Indústrias , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...