Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 223(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38758215

RESUMO

Microtubules are dynamic polymers that interconvert between phases of growth and shrinkage, yet they provide structural stability to cells. Growth involves hydrolysis of GTP-tubulin to GDP-tubulin, which releases energy that is stored within the microtubule lattice and destabilizes it; a GTP cap at microtubule ends is thought to prevent GDP subunits from rapidly dissociating and causing catastrophe. Here, using in vitro reconstitution assays, we show that GDP-tubulin, usually considered inactive, can itself assemble into microtubules, preferentially at the minus end, and promote persistent growth. GDP-tubulin-assembled microtubules are highly stable, displaying no detectable spontaneous shrinkage. Strikingly, islands of GDP-tubulin within dynamic microtubules stop shrinkage events and promote rescues. Microtubules thus possess an intrinsic capacity for stability, independent of accessory proteins. This finding provides novel mechanisms to explain microtubule dynamics.


Assuntos
Guanosina Difosfato , Microtúbulos , Tubulina (Proteína) , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Guanosina Difosfato/metabolismo , Animais , Guanosina Trifosfato/metabolismo , Humanos
3.
Neuron ; 111(18): 2881-2898.e12, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37442131

RESUMO

In the adult mammalian central nervous system (CNS), axons fail to regenerate spontaneously after injury because of a combination of extrinsic and intrinsic factors. Despite recent advances targeting the intrinsic regenerative properties of adult neurons, the molecular mechanisms underlying axon regeneration are not fully understood. Here, we uncover a regulatory mechanism that controls the expression of key proteins involved in regeneration at the translational level. Our results show that mRNA-specific translation is critical for promoting axon regeneration. Indeed, we demonstrate that specific ribosome-interacting proteins, such as the protein Huntingtin (HTT), selectively control the translation of a specific subset of mRNAs. Moreover, modulating the expression of these translationally regulated mRNAs is crucial for promoting axon regeneration. Altogether, our findings highlight that selective translation through the customization of the translational complex is a key mechanism of axon regeneration with major implications in the development of therapeutic strategies for CNS repair.


Assuntos
Axônios , Regeneração Nervosa , Animais , Axônios/metabolismo , Regeneração Nervosa/genética , Sistema Nervoso Central/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Mamíferos/metabolismo
5.
PLoS Biol ; 21(4): e3002044, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37068088

RESUMO

Unlike immature neurons and the ones from the peripheral nervous system (PNS), mature neurons from the central nervous system (CNS) cannot regenerate after injury. In the past 15 years, tremendous progress has been made to identify molecules and pathways necessary for neuroprotection and/or axon regeneration after CNS injury. In most regenerative models, phosphorylated ribosomal protein S6 (p-RPS6) is up-regulated in neurons, which is often associated with an activation of the mTOR (mammalian target of rapamycin) pathway. However, the exact contribution of posttranslational modifications of this ribosomal protein in CNS regeneration remains elusive. In this study, we demonstrate that RPS6 phosphorylation is essential for PNS and CNS regeneration in mice. We show that this phosphorylation is induced during the preconditioning effect in dorsal root ganglion (DRG) neurons and that it is controlled by the p90S6 kinase RSK2. Our results reveal that RSK2 controls the preconditioning effect and that the RSK2-RPS6 axis is key for this process, as well as for PNS regeneration. Finally, we demonstrate that RSK2 promotes CNS regeneration in the dorsal column, spinal cord synaptic plasticity, and target innervation leading to functional recovery. Our data establish the critical role of RPS6 phosphorylation controlled by RSK2 in CNS regeneration and give new insights into the mechanisms related to axon growth and circuit formation after traumatic lesion.


Assuntos
Axônios , Regeneração Nervosa , Proteínas Quinases S6 Ribossômicas 90-kDa , Animais , Camundongos , Axônios/metabolismo , Sistema Nervoso Central , Regeneração Nervosa/fisiologia , Neurônios/fisiologia , Medula Espinal
6.
Inflamm Regen ; 42(1): 60, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476643

RESUMO

BACKGROUND: Axons play an essential role in the connection of the nervous system with the rest of the body. Axon lesions often lead to permanent impairment of motor and cognitive functions and the interaction with the outside world. Studies focusing on axon regeneration have become a research field with considerable interest. The purpose of this study is to obtain an overall perspective of the research field of axonal regeneration and to assist the researchers and the funding agencies to better know the areas of greatest research opportunities. METHODS: We conducted a bibliometric analysis and Latent Dirichlet Allocation (LDA) analysis of the global literature on axon regeneration based on the Web of Science (WoS) over the recent 22 years, to address the research hotspots, publication trends, and understudied areas. RESULTS: A total of 21,018 articles were included, which in the recent two decades has increased by 125%. Among the top 12 hotspots, the annual productions rapidly increased in some topics, including axonal regeneration signaling pathway, axon guidance cues, neural circuits and functional recovery, nerve conduits, and cells transplant. Comparatively, the number of studies on axon regeneration inhibitors decreased. As for the topics focusing on nerve graft and transplantation, the annual number of papers tended to be relatively stable. Nevertheless, the underlying mechanisms of axon regrowth have not been completely uncovered. A lack of notable research on the epigenetic programs and noncoding RNAs regulation was observed. The significance of cell-type-specific data has been highlighted but with limited research working on that. Functional recovery from neuropathies also needs further studies. CONCLUSION: The last two decades witnessed tremendous progress in the field of axon regeneration. There are still a lot of challenges to be tackled in translating these technologies into clinical practice.

7.
Nat Commun ; 13(1): 6040, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229455

RESUMO

In the injured adult central nervous system (CNS), activation of pro-growth molecular pathways in neurons leads to long-distance regeneration. However, most regenerative fibers display guidance defects, which prevent reinnervation and functional recovery. Therefore, the molecular characterization of the proper target regions of regenerative axons is essential to uncover the modalities of adult reinnervation. In this study, we use mass spectrometry (MS)-based quantitative proteomics to address the proteomes of major nuclei of the adult visual system. These analyses reveal that guidance-associated molecules are expressed in adult visual targets. Moreover, we show that bilateral optic nerve injury modulates the expression of specific proteins. In contrast, the expression of guidance molecules remains steady. Finally, we show that regenerative axons are able to respond to guidance cues ex vivo, suggesting that these molecules possibly interfere with brain target reinnervation in adult. Using a long-distance regeneration model, we further demonstrate that the silencing of specific guidance signaling leads to rerouting of regenerative axons in vivo. Altogether, our results suggest ways to modulate axon guidance of regenerative neurons to achieve circuit repair in adult.


Assuntos
Regeneração Nervosa , Traumatismos do Nervo Óptico , Axônios/metabolismo , Humanos , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/metabolismo , Proteoma/metabolismo , Proteômica
8.
Neural Regen Res ; 17(4): 800-802, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34472477
9.
Front Mol Neurosci ; 13: 599948, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324161

RESUMO

In mammals, adult neurons fail to regenerate following any insult to adult central nervous system (CNS), which leads to a permanent and irreversible loss of motor and cognitive functions. For a long time, much effort has been deployed to uncover mechanisms of axon regeneration in the CNS. Even if some cases of functional recovery have been reported, there is still a discrepancy regarding the functionality of a neuronal circuit upon lesion. Today, there is a need not only to identify new molecules implicated in adult CNS axon regeneration, but also to decipher the fine molecular mechanisms associated with regeneration failure. Here, we propose to use cultures of adult retina explants to study all molecular and cellular mechanisms that occur during CNS regeneration. We show that adult retinal explant cultures have the advantages to (i) recapitulate all the features observed in vivo, including axon regeneration induced by intrinsic factors, and (ii) be an ex vivo set-up with high accessibility and many downstream applications. Thanks to several examples, we demonstrate that adult explants can be used to address many questions, such as axon guidance, growth cone formation and cytoskeleton dynamics. Using laser guided ablation of a single axon, axonal injury can be performed at a single axon level, which allows to record early and late molecular events that occur after the lesion. Our model is the ideal tool to study all molecular and cellular events that occur during CNS regeneration at a single-axon level, which is currently not doable in vivo. It is extremely valuable to address unanswered questions of neuroprotection and neuroregeneration in the context of CNS lesion and neurodegenerative diseases.

10.
Science ; 368(6490): 527-531, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32355031

RESUMO

Retinal ganglion cells (RGCs) drive diverse, light-evoked behaviors that range from conscious visual perception to subconscious, non-image-forming behaviors. It is thought that RGCs primarily drive these functions through the release of the excitatory neurotransmitter glutamate. We identified a subset of melanopsin-expressing intrinsically photosensitive RGCs (ipRGCs) in mice that release the inhibitory neurotransmitter γ-aminobutyric acid (GABA) at non-image-forming brain targets. GABA release from ipRGCs dampened the sensitivity of both the pupillary light reflex and circadian photoentrainment, thereby shifting the dynamic range of these behaviors to higher light levels. Our results identify an inhibitory RGC population in the retina and provide a circuit-level mechanism that contributes to the relative insensitivity of non-image-forming behaviors at low light levels.


Assuntos
Vias Neurais/fisiologia , Células Ganglionares da Retina/fisiologia , Percepção Visual/fisiologia , Animais , Feminino , Neurônios GABAérgicos/fisiologia , Glutamato Descarboxilase/metabolismo , Luz , Masculino , Camundongos , Camundongos Mutantes , Vias Neurais/efeitos dos fármacos , Reflexo Pupilar/fisiologia , Reflexo Pupilar/efeitos da radiação , Células Ganglionares da Retina/efeitos da radiação , Opsinas de Bastonetes/metabolismo , Inconsciente Psicológico , Percepção Visual/efeitos da radiação , Ácido gama-Aminobutírico/metabolismo
11.
Neuron ; 89(5): 956-70, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26898779

RESUMO

The regenerative capacity of the injured CNS in adult mammals is severely limited, yet axons in the peripheral nervous system (PNS) regrow, albeit to a limited extent, after injury. We reasoned that coordinate regulation of gene expression in injured neurons involving multiple pathways was central to PNS regenerative capacity. To provide a framework for revealing pathways involved in PNS axon regrowth after injury, we applied a comprehensive systems biology approach, starting with gene expression profiling of dorsal root ganglia (DRGs) combined with multi-level bioinformatic analyses and experimental validation of network predictions. We used this rubric to identify a drug that accelerates DRG neurite outgrowth in vitro and optic nerve outgrowth in vivo by inducing elements of the identified network. The work provides a functional genomics foundation for understanding neural repair and proof of the power of such approaches in tackling complex problems in nervous system biology.


Assuntos
Axônios/fisiologia , Gânglios Espinais/citologia , Regeneração Nervosa/fisiologia , Neurônios/citologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , Animais , Animais Recém-Nascidos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante) , Canais Iônicos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos , Regeneração Nervosa/genética , Transferases de Grupos Nitrogenados/genética , Transferases de Grupos Nitrogenados/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo
12.
Neuron ; 88(4): 704-19, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26526391

RESUMO

After axotomy, neuronal survival and growth cone re-formation are required for axon regeneration. We discovered that doublecortin-like kinases (DCLKs), members of the doublecortin (DCX) family expressed in adult retinal ganglion cells (RGCs), play critical roles in both processes, through distinct mechanisms. Overexpression of DCLK2 accelerated growth cone re-formation in vitro and enhanced the initiation and elongation of axon re-growth after optic nerve injury. These effects depended on both the microtubule (MT)-binding domain and the serine-proline-rich (S/P-rich) region of DCXs in-cis in the same molecules. While the MT-binding domain is known to stabilize MT structures, we show that the S/P-rich region prevents F-actin destabilization in injured axon stumps. Additionally, while DCXs synergize with mTOR to stimulate axon regeneration, alone they can promote neuronal survival possibly by regulating the retrograde propagation of injury signals. Multifunctional DCXs thus represent potential targets for promoting both survival and regeneration of injured neurons.


Assuntos
Actinas/metabolismo , Axônios/metabolismo , Microtúbulos/metabolismo , Regeneração Nervosa/genética , Proteínas Serina-Treonina Quinases/genética , Células Ganglionares da Retina/metabolismo , Animais , Axônios/fisiologia , Axotomia , Sobrevivência Celular , Proteína Duplacortina , Quinases Semelhantes a Duplacortina , Cones de Crescimento , Técnicas In Vitro , Camundongos , Regeneração Nervosa/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Traumatismos do Nervo Óptico , Proteínas Serina-Treonina Quinases/metabolismo , Células Ganglionares da Retina/fisiologia , Serina-Treonina Quinases TOR/metabolismo
13.
Neuron ; 86(4): 1000-1014, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25937169

RESUMO

Neurons differ in their responses to injury, but the underlying mechanisms remain poorly understood. Using quantitative proteomics, we characterized the injury-triggered response from purified intact and axotomized retinal ganglion cells (RGCs). Subsequent informatics analyses revealed a network of injury-response signaling hubs. In addition to confirming known players, such as mTOR, this also identified new candidates, such as c-myc, NFκB, and Huntingtin. Similar to mTOR, c-myc has been implicated as a key regulator of anabolic metabolism and is downregulated by axotomy. Forced expression of c-myc in RGCs, either before or after injury, promotes dramatic RGC survival and axon regeneration after optic nerve injury. Finally, in contrast to RGCs, neither c-myc nor mTOR was downregulated in injured peripheral sensory neurons. Our studies suggest that c-myc and other injury-responsive pathways are critical to the intrinsic regenerative mechanisms and might represent a novel target for developing neural repair strategies in adults.


Assuntos
Axônios/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/metabolismo , Proteômica , Células Ganglionares da Retina/metabolismo , Animais , Axônios/patologia , Axotomia/métodos , Sobrevivência Celular/fisiologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Transdução de Sinais/fisiologia
14.
Nat Neurosci ; 18(1): 36-45, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25485759

RESUMO

Robo-Slit and Plexin-Semaphorin signaling participate in various developmental and pathogenic processes. During commissural axon guidance in the spinal cord, chemorepulsion by Semaphorin3B and Slits controls midline crossing. Slit processing generates an N-terminal fragment (SlitN) that binds to Robo1 and Robo2 receptors and mediates Slit repulsive activity, as well as a C-terminal fragment (SlitC) with an unknown receptor and bioactivity. We identified PlexinA1 as a Slit receptor and found that it binds the C-terminal Slit fragment specifically and transduces a SlitC signal independently of the Robos and the Neuropilins. PlexinA1-SlitC complexes are detected in spinal cord extracts, and ex vivo, SlitC binding to PlexinA1 elicits a repulsive commissural response. Analysis of various ligand and receptor knockout mice shows that PlexinA1-Slit and Robo-Slit signaling have complementary roles during commissural axon guidance. Thus, PlexinA1 mediates both Semaphorin and Slit signaling, and Slit processing generates two active fragments, each exerting distinct effects through specific receptors.


Assuntos
Axônios/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Fragmentos de Peptídeos/fisiologia , Receptores de Superfície Celular/fisiologia , Animais , Células Cultivadas , Embrião de Galinha , Genótipo , Cones de Crescimento , Camundongos , RNA Interferente Pequeno/genética , Medula Espinal/anatomia & histologia , Medula Espinal/citologia
15.
J Neurosci ; 34(28): 9404-17, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25009272

RESUMO

The motor function of the spinal cord requires the computation of the local neuronal circuits within the same segments as well as the long-range coordination of different spinal levels. Implicated players in this process are the propriospinal neurons (PPNs) that project their axons across different levels of the spinal cord. However, their cellular, molecular, and functional properties remain unknown. Here we use a recombinant rabies virus-based method to label a specific type of long-projecting premotor PPNs in the mouse upper spinal cord that are monosynaptically connected to the motor neurons in the lumbar spinal cord. With a whole spinal cord imaging method, we find that these neurons are distributed along the entire length of the upper spinal cord with more in the lower thoracic levels. Among them, a subset of thoracic PPNs receive substantial numbers of sensory inputs, suggesting a function in coordinating the activity of trunk and hindlimb muscles. Although many PPNs in the cervical and thoracic spinal cord receive the synaptic inputs from corticospinal tract or serotonergic axons, limited bouton numbers suggested that these supraspinal inputs might not be major regulators of the PPNs in intact animals. Molecularly, these PPNs appear to be distinct from other known premotor interneurons, but some are derived from Chx10+ lineages. This study provides an anatomical basis for further exploring different functions of PPNs.


Assuntos
Neurônios Motores/citologia , Tratos Piramidais/citologia , Células Receptoras Sensoriais/citologia , Medula Espinal/citologia , Animais , Feminino , Masculino , Camundongos , Vias Neurais/citologia
16.
Neuron ; 75(6): 1051-66, 2012 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-22998873

RESUMO

The Neurotrophic factor gdnf plays diverse developmental roles, supporting survival and also acting as a chemoattractant for axon and cell migration. We report that in the developing spinal cord, a focal source of gdnf is present in the floor plate (FP) where commissural axons cross the midline. Gdnf has no direct guidance properties but switches on the responsiveness of crossing commissural growth cones to the midline repellent Semaphorin3B by suppressing calpain-mediated processing of the Sema3B signaling coreceptor Plexin-A1. Analysis of single and double mutant mouse models indicates that although gdnf is the principal trigger of Sema3B midline repulsion, it acts with another FP cue, NrCAM. Finally, genetic and in vitro experiments provide evidence that this gdnf effect is RET independent and mediated by NCAM/GFRα1 signaling. This study identifies a regulator of midline crossing and reveals interplays between Semaphorin and gdnf signaling during axon guidance.


Assuntos
Axônios/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/citologia , Semaforinas/metabolismo , Análise de Variância , Animais , Axônios/efeitos dos fármacos , Padronização Corporal/genética , Calpaína/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Células Cultivadas , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/deficiência , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Humanos , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/genética , Neurônios/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Semaforinas/genética , Medula Espinal/citologia , Medula Espinal/embriologia , Transfecção
17.
Genes Dev ; 26(14): 1509-14, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22802524

RESUMO

Despite important progress made in understanding the mechanisms of axon regeneration, how a neuron responds to an injury and makes a regenerative decision remains unclear. In this issue of Genes & Development, Song and colleagues (pp. 1612-1625) investigate axonal and dendritic regeneration in the Drosophila peripheral nervous system (PNS). With some mechanisms shared with mammals, this study reveals surprisingly complicated regenerative responses in terms of cell type, developmental stage, and mechanism specificity. With forward genetic potential, such invertebrates should be powerful in dissecting the cellular and molecular control of neuronal repair.


Assuntos
Axônios/metabolismo , Dendritos/metabolismo , Proteínas de Drosophila/metabolismo , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regeneração/fisiologia , Células Receptoras Sensoriais/metabolismo , Animais
18.
PLoS Genet ; 8(3): e1002606, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479201

RESUMO

The corpus callosum (CC) is the major commissure that bridges the cerebral hemispheres. Agenesis of the CC is associated with human ciliopathies, but the origin of this default is unclear. Regulatory Factor X3 (RFX3) is a transcription factor involved in the control of ciliogenesis, and Rfx3-deficient mice show several hallmarks of ciliopathies including left-right asymmetry defects and hydrocephalus. Here we show that Rfx3-deficient mice suffer from CC agenesis associated with a marked disorganisation of guidepost neurons required for axon pathfinding across the midline. Using transplantation assays, we demonstrate that abnormalities of the mutant midline region are primarily responsible for the CC malformation. Conditional genetic inactivation shows that RFX3 is not required in guidepost cells for proper CC formation, but is required before E12.5 for proper patterning of the cortical septal boundary and hence accurate distribution of guidepost neurons at later stages. We observe focused but consistent ectopic expression of Fibroblast growth factor 8 (Fgf8) at the rostro commissural plate associated with a reduced ratio of GLIoma-associated oncogene family zinc finger 3 (GLI3) repressor to activator forms. We demonstrate on brain explant cultures that ectopic FGF8 reproduces the guidepost neuronal defects observed in Rfx3 mutants. This study unravels a crucial role of RFX3 during early brain development by indirectly regulating GLI3 activity, which leads to FGF8 upregulation and ultimately to disturbed distribution of guidepost neurons required for CC morphogenesis. Hence, the RFX3 mutant mouse model brings novel understandings of the mechanisms that underlie CC agenesis in ciliopathies.


Assuntos
Corpo Caloso , Proteínas de Ligação a DNA , Fator 8 de Crescimento de Fibroblasto , Fatores de Transcrição Kruppel-Like , Proteínas do Tecido Nervoso , Neurônios , Fatores de Transcrição , Animais , Axônios/metabolismo , Axônios/fisiologia , Corpo Caloso/crescimento & desenvolvimento , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Fator 8 de Crescimento de Fibroblasto/genética , Fator 8 de Crescimento de Fibroblasto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Mutantes , Morfogênese/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Proteína Gli3 com Dedos de Zinco
19.
Cell Mol Life Sci ; 68(15): 2539-53, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21538161

RESUMO

Organisms with bilateral symmetry elaborate patterns of neuronal projections connecting both sides of the central nervous system at all levels of the neuraxis. During development, these so-called commissural projections navigate across the midline to innervate their contralateral targets. Commissural axon pathfinding has been extensively studied over the past years and turns out to be a highly complex process, implicating modulation of axon responsiveness to the various guidance cues that instruct axon trajectories towards, within and away from the midline. Understanding the molecular mechanisms allowing these switches of response to take place at the appropriate time and place is a major challenge for current research. Recent work characterized several instructive processes controlling the spatial and temporal fine-tuning of the guidance molecular machinery. These findings illustrate the molecular strategies by which commissural axons modulate their sensitivity to guidance cues during midline crossing and show that regulation at both transcriptional and post-transcriptional levels are crucial for commissural axon guidance.


Assuntos
Axônios/fisiologia , Sistema Nervoso Central/fisiologia , Sinapses/fisiologia , Animais , Transporte Axonal/genética , Transporte Axonal/fisiologia , Axônios/metabolismo , Movimento Celular/genética , Movimento Celular/fisiologia , Sistema Nervoso Central/metabolismo , Drosophila/genética , Drosophila/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Modelos Biológicos , Sinapses/genética , Sinapses/metabolismo
20.
Genes Dev ; 24(4): 396-410, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20159958

RESUMO

Commissural axon guidance requires complex modulations of growth cone sensitivity to midline-derived cues, but underlying mechanisms in vertebrates remain largely unknown. By using combinations of ex vivo and in vivo approaches, we uncovered a molecular pathway controlling the gain of response to a midline repellent, Semaphorin3B (Sema3B). First, we provide evidence that Semaphorin3B/Plexin-A1 signaling participates in the guidance of commissural projections at the vertebrate ventral midline. Second, we show that, at the precrossing stage, commissural neurons synthesize the Neuropilin-2 and Plexin-A1 Semaphorin3B receptor subunits, but Plexin-A1 expression is prevented by a calpain1-mediated processing, resulting in silencing commissural responsiveness. Third, we report that, during floor plate (FP) in-growth, calpain1 activity is suppressed by local signals, allowing Plexin-A1 accumulation in the growth cone and sensitization to Sema3B. Finally, we show that the FP cue NrCAM mediates the switch of Plexin-A1 processing underlying growth cone sensitization to Sema3B. This reveals pathway-dependent modulation of guidance receptor processing as a novel mechanism for regulating guidance decisions at intermediate targets.


Assuntos
Axônios/fisiologia , Neurônios/citologia , Transdução de Sinais , Animais , Axônios/metabolismo , Calpaína/metabolismo , Moléculas de Adesão Celular/metabolismo , Embrião de Galinha , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neuropilina-2/metabolismo , Semaforinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...