Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(48): 26363-26373, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37982703

RESUMO

A novel spectroscopic approach for studying the flexibility and mobility in the hydrophobic interior of lipid bilayers at specific depths is proposed. A set of test compounds featuring an azido moiety and a cyano or carboxylic acid moiety, connected by an alkyl chain of different lengths, was synthesized. FTIR data and molecular dynamics calculations indicated that the test compounds in a bilayer are oriented so that the cyano or carboxylic acid moiety is located in the lipid head-group region, while the azido group stays inside the bilayer at the depth determined by its alkyl chain length. We found that the asymmetric stretching mode of the azido group (νN3) can serve as a reporter of the membrane interior dynamics. FTIR and two-dimensional infrared (2DIR) studies were performed at different temperatures, ranging from 22 to 45 °C, covering the Lß-Lα phase transition temperature of dipalmitoylphosphatidylcholine (∼41 °C). The width of the νN3 peak was found to be very sensitive to the phase transition and to the temperature in general. We introduced an order parameter, SN3, which characterizes restrictions to motion inside the bilayer. 2DIR spectra of νN3 showed different extents of inhomogeneity at different depths in the bilayer, with the smallest inhomogeneity in the middle of the leaflet. The spectral diffusion dynamics of the N3 peak was found to be dependent on the depth of the N3 group location in the bilayer. The obtained results enhance our understanding of the bilayer dynamics and can be extended to investigate membranes with more complex compositions.

2.
J Phys Chem B ; 127(41): 8916-8925, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37812742

RESUMO

Though local structures in ionic liquids are dominated by strong Coulomb forces, directional hydrogen bonds can also influence the physicochemical properties of imidazolium-based ionic liquids. In particular, the C-2 position of the imidazolium cation is acidic and can bind with suitable hydrogen bond acceptor sites of molecular solvents dissolved in imidazolium-based ionic liquids. In this report, we identify hydrogen-bonded microenvironments of the model ionic liquid, 1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluorophosphate, and the changes that occur when molecular solvents are dissolved in it by using a C-D infrared reporter at the C-2 position of the cation. Our linear and nonlinear infrared experiments, along with computational studies, indicate that the molecular solvent dimethyl sulfoxide can form strong hydrogen-bonded dimers with the cation of the ionic liquid at the C-2 position. In contrast, acetone, which is also a hydrogen bond acceptor similar to dimethyl sulfoxide, does not show evidence of cation-solvent hydrogen-bonded conformers at the C-2 position. The outcome of our study on a broad scale strengthens the importance of cation-solute interactions in ionic liquids.

3.
J Biomol Struct Dyn ; 40(21): 11395-11404, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34343444

RESUMO

The traffic of molecules into or out of cells is regulated by many membrane-associated mechanisms. Membrane pores are considered as one of the major passage mechanisms, although molecular-level understanding of pore formation is still vague. The opening of a membrane pore depends on many factors, including the influence of some proteins. The ability of the cell-penetrating peptides and supercharged proteins to form membrane pores has been reported. We studied pore formation through dipalmitoylphosphatidylcholine (DPPC) lipid bilayers by supercharged dengue virus capsid (C) protein. Atomistic molecular dynamics simulations confirmed the formation of membrane pores by a combined effect of the C protein and the membrane electric field. Analyses of simulated trajectories showed highly correlated vertical position fluctuations between the Cα atom of the membrane-anchored arginine residues and the phosphorus atoms of the surrounding DPPC lipids. Certain regions of the bilayer were negatively correlated while the others were positively correlated with respect to the fluctuations of the Cα atom of the anchored arginine residues. When positively correlated lipids in one leaflet vertically aligned with the negatively correlated lipids in the other leaflet, a local anticorrelated region was generated by weakening the bilayer. The membrane pore was always formed close to this anticorrelated region. Once formed, the C protein followed the hydrated pathway provided by the water-filled pores to cross the membrane.Communicated by Ramaswamy H. Sarma.


Assuntos
Vírus da Dengue , Simulação de Dinâmica Molecular , Água/química , Proteínas do Capsídeo , Bicamadas Lipídicas/química , Arginina
4.
J Phys Chem B ; 125(27): 7546-7555, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34185993

RESUMO

The ballistic regime of vibrational energy transport in oligomeric molecular chains occurs with a constant, often high, transport speed and high efficiency. Such a transport regime can be initiated by exciting a chain end group with a mid-infrared (IR) photon. To better understand the wavepacket formation process, two chemically identical end groups, azido groups with normal, 14N3-, and isotopically substituted, 15N3-, nitrogen atoms, were tested for wavepacket initiation in compounds with alkyl chains of n = 5, 10, and 15 methylene units terminated with a carboxylic acid (-a) group, denoted as 14N3Cn-a and 15N3Cn-a. The transport was initiated by exciting the azido moiety stretching mode, the νN≡N tag, at 2100 cm-1 (14N3Cn-a) or 2031 cm-1 (15N3Cn-a). Opposite to the expectation, the ballistic transport speed was found to decrease upon 14N3 → 15N3 isotope editing. Three mechanisms of the transport initiation of a vibrational wavepacket are described and analyzed. The first mechanism involves the direct formation of a wavepacket via excitation with IR photons of several strong Fermi resonances of the tag mode with the νN═N + νN-C combination state while each of the combination state components is mixed with delocalized chain states. The second mechanism relies on the vibrational relaxation of an end-group-localized tag into a mostly localized end-group state that is strongly coupled to multiple delocalized states of a chain band. Harmonic mixing of νN═N of the azido group with CH2 wagging states of the chain permits a wavepacket formation within a portion of the wagging band, suggesting a fast transport speed. The third mechanism involves the vibrational relaxation of an end-group-localized mode into chain states. Two such pathways were found for the νN≡N initiation: The νN═N mode relaxes efficiently into the twisting band states and low-frequency acoustic modes, and the νN-C mode relaxes into the rocking band states and low-frequency acoustic modes. The contributions of the three initiation mechanisms in the ballistic energy transport initiated by νN≡N tag are quantitatively evaluated and related to the experiment. We conclude that the third mechanism dominates the transport in alkane chains of 5-15 methylene units initiated with the νN≡N tag and the wavepacket generated predominantly at the CH2 twisting band. The isotope effect of the transport speed is attributed to a larger contribution of the faster wavepackets for 14N3Cn-a or to the different breadth of the wavepacket within the twisting band. The study offers a systematic description of different transport initiation mechanisms and discusses the requirements and features of each mechanism. Such analysis will be useful for designing novel materials for energy management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...