Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 9057, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270598

RESUMO

This study performed in-situ microwave pyrolysis of plastic waste into hydrogen, liquid fuel and carbon nanotubes in the presence of Zeolite Socony Mobil ZSM-5 catalyst. In the presented microwave pyrolysis of plastics, activated carbon was used as a heat susceptor. The microwave power of 1 kW was employed to decompose high-density polyethylene (HDPE) and polypropylene (PP) wastes at moderate temperatures of 400-450 °C. The effect of plastic composition, catalyst loading and plastic type on liquid, gas and solid carbon products was quantified. This in-situ CMP reaction resulted in heavy hydrocarbons, hydrogen gas and carbon nanotubes as a solid residue. A relatively better hydrogen yield of 129.6 mmol/g as a green fuel was possible in this process. FTIR and gas chromatography analysis revealed that liquid product consisted of C13+ fraction hydrocarbons, such as alkanes, alkanes, and aromatics. TEM micrographs showed tubular-like structural morphology of the solid residue, which was identified as carbon nanotubes (CNTs) during X-ray diffraction analysis. The outer diameter of CNTs ranged from 30 to 93 nm from HDPE, 25-93 nm from PP and 30-54 nm for HDPE-PP mixure. The presented CMP process took just 2-4 min to completely pyrolyze the plastic feedstock into valuable products, leaving no polymeric residue.

2.
Materials (Basel) ; 16(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36902928

RESUMO

Analyzing the global waste management sector, we can see that some waste, due to its specificity, is a major challenge when it comes to its management. This group includes rubber waste and sewage sludge. Both items pose a major threat to the environment and human health. The remedy for this problem may be the solidification process, in which the presented wastes are used as substrates in the production of concrete. The aim of this work was to determine the effect of waste addition to cement in the form of an active additive (sewage sludge) and a passive additive (rubber granulate). An unusual approach to sewage sludge was used, which was introduced as a substitute for water, and not, as in most works, sewage sludge ash. In the case of the second waste, commonly used tire granules were replaced with rubber particles resulting from the fragmentation of conveyor belts. A wide range of the share of additives in the cement mortar was analyzed. The results for the rubber granulate were consistent with numerous publications. For the addition in the form of hydrated sewage sludge, the deterioration of the mechanical properties of concrete was demonstrated. It was found that the flexural strength of the concrete in which water was replaced with hydrated sewage sludge was lower than that of the sample without the addition of sludge. The compressive strength of concrete with the addition of rubber granules was higher than the control sample and did not significantly depend on the amount of granulate used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...