Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38741718

RESUMO

We are designing a real-time spectral imaging system using micro-LEDs and a high-speed micro-camera for potential endoscopic applications. Currently, gastrointestinal (GI) endoscopic imaging has largely been limited to white light imaging (WLI), while other endoscopic approaches have seen advancements in imaging techniques including fluorescence imaging, narrow-band imaging, and stereoscopic visualization. To further advance GI endoscopic imaging, we are working towards a high-speed spectral imaging system that can be implemented with a chip-on-tip design for a flexible endoscope. Hyperspectral imaging has potential applications in a variety of imaging procedures with its ability to discern spectral footprints of the imaging field in a series of two-dimensional images at different wavelengths. For investigating the feasibility of a real-time LED-based hyperspectral imaging system for endoscopic applications we designed and developed a large-scale prototype using through-hole LEDs, which is further analyzed as we design our future system. For high quality imaging, the LED array must be designed with the specific illumination patterns and intensities of each LED considered. We present our work in optimizing our current LED array through optical simulations performed in silico. Damped least squares and orthogonal descent algorithms are implemented to maximize irradiance power and improve illumination homogeneity at several working distances by adjusting radial distances of each LED from the camera. With our prototype LED-based hyperspectral imaging system, the simulation and optimization approach achieved an average increase of 8.36 ± 8.79% in irradiance and a 4.3% decrease in standard deviation at multiple working distances and field-of-views for each LED, as compared to the original design, leading to improved image quality and maintained acquisition speeds. This work highlights the value of in silico optical simulation and provides a framework for improved optical system design and will inform design decisions in future works.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38708142

RESUMO

Biopsies play a crucial role in diagnosis of various diseases including cancers. In this study, we developed an augmented reality (AR) system to improve biopsy procedures and increase targeting accuracy. Our AR-guided biopsy system uses a high-speed motion tracking technology and an AR headset to display a holographic representation of the organ, lesions, and other structures of interest superimposed on real physical objects. The first application of our AR system is prostate biopsy. By incorporating preoperative scans, such as computed tomography (CT) or magnetic resonance imaging (MRI), into real-time ultrasound-guided procedures, this innovative AR-guided system enables clinicians to see the lesion as well as the organs in real time. With the enhanced visualization of the prostate, lesion, and surrounding organs, surgeons can perform prostate biopsies with an increased accuracy. Our AR-guided biopsy system yielded an average targeting accuracy of 2.94 ± 1.04 mm and can be applied for real-time guidance of prostate biopsy as well as other biopsy procedures.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38708143

RESUMO

While minimally invasive laparoscopic surgery can help reduce blood loss, reduce hospital time, and shorten recovery time compared to open surgery, it has the disadvantages of limited field of view and difficulty in locating subsurface targets. Our proposed solution applies an augmented reality (AR) system to overlay pre-operative images, such as those from magnetic resonance imaging (MRI), onto the target organ in the user's real-world environment. Our system can provide critical information regarding the location of subsurface lesions to guide surgical procedures in real time. An infrared motion tracking camera system was employed to obtain real-time position data of the patient and surgical instruments. To perform hologram registration, fiducial markers were used to track and map virtual coordinates to the real world. In this study, phantom models of each organ were constructed to test the reliability and accuracy of the AR-guided laparoscopic system. Root mean square error (RMSE) was used to evaluate the targeting accuracy of the laparoscopic interventional procedure. Our results demonstrated a registration error of 2.42 ± 0.79 mm and a procedural targeting error of 4.17 ± 1.63 mm using our AR-guided laparoscopic system that will be further refined for potential clinical procedures.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38745863

RESUMO

Augmented reality (AR) has seen increased interest and attention for its application in surgical procedures. AR-guided surgical systems can overlay segmented anatomy from pre-operative imaging onto the user's environment to delineate hard-to-see structures and subsurface lesions intraoperatively. While previous works have utilized pre-operative imaging such as computed tomography or magnetic resonance images, registration methods still lack the ability to accurately register deformable anatomical structures without fiducial markers across modalities and dimensionalities. This is especially true of minimally invasive abdominal surgical techniques, which often employ a monocular laparoscope, due to inherent limitations. Surgical scene reconstruction is a critical component towards accurate registrations needed for AR-guided surgery and other downstream AR applications such as remote assistance or surgical simulation. In this work, we utilize a state-of-the-art (SOTA) deep-learning-based visual simultaneous localization and mapping (vSLAM) algorithm to generate a dense 3D reconstruction with camera pose estimations and depth maps from video obtained with a monocular laparoscope. The proposed method can robustly reconstruct surgical scenes using real-time data and provide camera pose estimations without stereo or additional sensors, which increases its usability and is less intrusive. We also demonstrate a framework to evaluate current vSLAM algorithms on non-Lambertian, low-texture surfaces and explore using its outputs on downstream tasks. We expect these evaluation methods can be utilized for the continual refinement of newer algorithms for AR-guided surgery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...