Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(1): 108640, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38292165

RESUMO

Predicting reinforcement from sensory cues is beneficial for goal-directed behavior. In insect brains, underlying associations between cues and reinforcement, encoded by dopaminergic neurons, are formed in the mushroom body. We propose a spiking model of the Drosophila larva mushroom body. It includes a feedback motif conveying learned reinforcement expectation to dopaminergic neurons, which can compute prediction error as the difference between expected and present reinforcement. We demonstrate that this can serve as a driving force in learning. When combined with synaptic homeostasis, our model accounts for theoretically derived features of acquisition and loss of associations that depend on the intensity of the reinforcement and its temporal proximity to the cue. From modeling olfactory learning over the time course of behavioral experiments and simulating the locomotion of individual larvae toward or away from odor sources in a virtual environment, we conclude that learning driven by prediction errors can explain larval behavior.

2.
Curr Biol ; 33(19): 4217-4224.e4, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37657449

RESUMO

Animals form a behavioral decision by evaluating sensory evidence on the background of past experiences and the momentary motivational state. In insects, we still lack understanding of how and at which stage of the recurrent sensory-motor pathway behavioral decisions are formed. The mushroom body (MB), a central brain structure in insects1 and crustaceans,2,3 integrates sensory input of different modalities4,5,6 with the internal state, the behavioral state, and external sensory context7,8,9,10 through a large number of recurrent, mostly neuromodulatory inputs,11,12 implicating a functional role for MBs in state-dependent sensory-motor transformation.13,14 A number of classical conditioning studies in honeybees15,16 and fruit flies17,18,19 have provided accumulated evidence that at its output, the MB encodes the valence of a sensory stimulus with respect to its behavioral relevance. Recent work has extended this notion of valence encoding to the context of innate behaviors.8,20,21,22 Here, we co-analyzed a defined feeding behavior and simultaneous extracellular single-unit recordings from MB output neurons (MBONs) in the cockroach in response to timed sensory stimulation with odors. We show that clear neuronal responses occurred almost exclusively during behaviorally responded trials. Early MBON responses to the sensory stimulus preceded the feeding behavior and predicted its occurrence or non-occurrence from the single-trial population activity. Our results therefore suggest that at its output, the MB does not merely encode sensory stimulus valence. We hypothesize instead that the MB output represents an integrated signal of internal state, momentary environmental conditions, and experience-dependent memory to encode a behavioral decision.


Assuntos
Corpos Pedunculados , Neurônios , Animais , Corpos Pedunculados/fisiologia , Neurônios/fisiologia , Drosophila , Odorantes , Encéfalo , Insetos , Drosophila melanogaster/fisiologia
3.
Front Neuroinform ; 17: 941696, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844916

RESUMO

Spiking neural networks (SNNs) represent the state-of-the-art approach to the biologically realistic modeling of nervous system function. The systematic calibration for multiple free model parameters is necessary to achieve robust network function and demands high computing power and large memory resources. Special requirements arise from closed-loop model simulation in virtual environments and from real-time simulation in robotic application. Here, we compare two complementary approaches to efficient large-scale and real-time SNN simulation. The widely used NEural Simulation Tool (NEST) parallelizes simulation across multiple CPU cores. The GPU-enhanced Neural Network (GeNN) simulator uses the highly parallel GPU-based architecture to gain simulation speed. We quantify fixed and variable simulation costs on single machines with different hardware configurations. As a benchmark model, we use a spiking cortical attractor network with a topology of densely connected excitatory and inhibitory neuron clusters with homogeneous or distributed synaptic time constants and in comparison to the random balanced network. We show that simulation time scales linearly with the simulated biological model time and, for large networks, approximately linearly with the model size as dominated by the number of synaptic connections. Additional fixed costs with GeNN are almost independent of model size, while fixed costs with NEST increase linearly with model size. We demonstrate how GeNN can be used for simulating networks with up to 3.5 · 106 neurons (> 3 · 1012synapses) on a high-end GPU, and up to 250, 000 neurons (25 · 109 synapses) on a low-cost GPU. Real-time simulation was achieved for networks with 100, 000 neurons. Network calibration and parameter grid search can be efficiently achieved using batch processing. We discuss the advantages and disadvantages of both approaches for different use cases.

4.
Front Physiol ; 14: 1326307, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38269060

RESUMO

In well-established first-order conditioning experiments, the concurrence of a sensory cue with reinforcement forms an association, allowing the cue to predict future reinforcement. In the insect mushroom body, a brain region central to learning and memory, such associations are encoded in the synapses between its intrinsic and output neurons. This process is mediated by the activity of dopaminergic neurons that encode reinforcement signals. In second-order conditioning, a new sensory cue is paired with an already established one that presumably activates dopaminergic neurons due to its predictive power of the reinforcement. We explored minimal circuit motifs in the mushroom body for their ability to support second-order conditioning using mechanistic models. We found that dopaminergic neurons can either be activated directly by the mushroom body's intrinsic neurons or via feedback from the output neurons via several pathways. We demonstrated that the circuit motifs differ in their computational efficiency and robustness. Beyond previous research, we suggest an additional motif that relies on feedforward input of the mushroom body intrinsic neurons to dopaminergic neurons as a promising candidate for experimental evaluation. It differentiates well between trained and novel stimuli, demonstrating robust performance across a range of model parameters.

5.
Sci Rep ; 12(1): 10421, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729203

RESUMO

By learning, through experience, which stimuli coincide with dangers, it is possible to predict outcomes and act pre-emptively to ensure survival. In insects, this process is localized to the mushroom body (MB), the circuitry of which facilitates the coincident detection of sensory stimuli and punishing or rewarding cues and, downstream, the execution of appropriate learned behaviors. Here, we focused our attention on the mushroom body output neurons (MBONs) of the γ-lobes that act as downstream synaptic partners of the MB γ-Kenyon cells (KCs) to ask how the output of the MB γ-lobe is shaped by olfactory associative conditioning, distinguishing this from non-associative stimulus exposure effects, and without the influence of downstream modulation. This was achieved by employing a subcellularly localized calcium sensor to specifically monitor activity at MBON postsynaptic sites. Therein, we identified a robust associative modulation within only one MBON postsynaptic compartment (MBON-γ1pedc > α/ß), which displayed a suppressed postsynaptic response to an aversively paired odor. While this MBON did not undergo non-associative modulation, the reverse was true across the remainder of the γ-lobe, where general odor-evoked adaptation was observed, but no conditioned odor-specific modulation. In conclusion, associative synaptic plasticity underlying aversive olfactory learning is localized to one distinct synaptic γKC-to-γMBON connection.


Assuntos
Drosophila , Corpos Pedunculados , Animais , Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Aprendizagem , Corpos Pedunculados/fisiologia , Plasticidade Neuronal , Neurônios/fisiologia , Odorantes , Olfato/fisiologia
6.
eNeuro ; 8(3)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33785523

RESUMO

Extinction learning, the ability to update previously learned information by integrating novel contradictory information, is of high clinical relevance for therapeutic approaches to the modulation of maladaptive memories. Insect models have been instrumental in uncovering fundamental processes of memory formation and memory update. Recent experimental results in Drosophila melanogaster suggest that, after the behavioral extinction of a memory, two parallel but opposing memory traces coexist, residing at different sites within the mushroom body (MB). Here, we propose a minimalistic circuit model of the Drosophila MB that supports classical appetitive and aversive conditioning and memory extinction. The model is tailored to the existing anatomic data and involves two circuit motives of central functional importance. It employs plastic synaptic connections between Kenyon cells (KCs) and MB output neurons (MBONs) in separate and mutually inhibiting appetitive and aversive learning pathways. Recurrent modulation of plasticity through projections from MBONs to reinforcement-mediating dopaminergic neurons (DAN) implements a simple reward prediction mechanism. A distinct set of four MBONs encodes odor valence and predicts behavioral model output. Subjecting our model to learning and extinction protocols reproduced experimental results from recent behavioral and imaging studies. Simulating the experimental blocking of synaptic output of individual neurons or neuron groups in the model circuit confirmed experimental results and allowed formulation of testable predictions. In the temporal domain, our model achieves rapid learning with a step-like increase in the encoded odor value after a single pairing of the conditioned stimulus (CS) with a reward or punishment, facilitating single-trial learning.


Assuntos
Drosophila melanogaster , Corpos Pedunculados , Animais , Drosophila , Aprendizagem , Odorantes , Recompensa , Olfato
7.
Proc Natl Acad Sci U S A ; 117(45): 28412-28421, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33122439

RESUMO

Foraging is a vital behavioral task for living organisms. Behavioral strategies and abstract mathematical models thereof have been described in detail for various species. To explore the link between underlying neural circuits and computational principles, we present how a biologically detailed neural circuit model of the insect mushroom body implements sensory processing, learning, and motor control. We focus on cast and surge strategies employed by flying insects when foraging within turbulent odor plumes. Using a spike-based plasticity rule, the model rapidly learns to associate individual olfactory sensory cues paired with food in a classical conditioning paradigm. We show that, without retraining, the system dynamically recalls memories to detect relevant cues in complex sensory scenes. Accumulation of this sensory evidence on short time scales generates cast-and-surge motor commands. Our generic systems approach predicts that population sparseness facilitates learning, while temporal sparseness is required for dynamic memory recall and precise behavioral control. Our work successfully combines biological computational principles with spike-based machine learning. It shows how knowledge transfer from static to arbitrary complex dynamic conditions can be achieved by foraging insects and may serve as inspiration for agent-based machine learning.


Assuntos
Insetos/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Animais , Inteligência Artificial , Quimiotaxia , Biologia Computacional , Simulação por Computador , Condicionamento Clássico , Drosophila melanogaster/fisiologia , Aprendizado de Máquina , Memória/fisiologia , Corpos Pedunculados/fisiologia , Redes Neurais de Computação , Olfato
9.
eNeuro ; 7(2)2020.
Artigo em Inglês | MEDLINE | ID: mdl-32132095

RESUMO

Transformations between sensory representations are shaped by neural mechanisms at the cellular and the circuit level. In the insect olfactory system, the encoding of odor information undergoes a transition from a dense spatiotemporal population code in the antennal lobe to a sparse code in the mushroom body. However, the exact mechanisms shaping odor representations and their role in sensory processing are incompletely identified. Here, we investigate the transformation from dense to sparse odor representations in a spiking model of the insect olfactory system, focusing on two ubiquitous neural mechanisms: spike frequency adaptation at the cellular level and lateral inhibition at the circuit level. We find that cellular adaptation is essential for sparse representations in time (temporal sparseness), while lateral inhibition regulates sparseness in the neuronal space (population sparseness). The interplay of both mechanisms shapes spatiotemporal odor representations, which are optimized for the discrimination of odors during stimulus onset and offset. Response pattern correlation across different stimuli showed a nonmonotonic dependence on the strength of lateral inhibition with an optimum at intermediate levels, which is explained by two counteracting mechanisms. In addition, we find that odor identity is stored on a prolonged timescale in the adaptation levels but not in the spiking activity of the principal cells of the mushroom body, providing a testable hypothesis for the location of the so-called odor trace.


Assuntos
Corpos Pedunculados , Odorantes , Animais , Insetos , Neurônios , Condutos Olfatórios , Olfato
10.
iScience ; 23(2): 100852, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32058964

RESUMO

Insects are able to solve basic numerical cognition tasks. We show that estimation of numerosity can be realized and learned by a single spiking neuron with an appropriate synaptic plasticity rule. This model can be efficiently trained to detect arbitrary spatiotemporal spike patterns on a noisy and dynamic background with high precision and low variance. When put to test in a task that requires counting of visual concepts in a static image it required considerably less training epochs than a convolutional neural network to achieve equal performance. When mimicking a behavioral task in free-flying bees that requires numerical cognition, the model reaches a similar success rate in making correct decisions. We propose that using action potentials to represent basic numerical concepts with a single spiking neuron is beneficial for organisms with small brains and limited neuronal resources.

11.
Front Physiol ; 10: 1539, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31969831

RESUMO

Animal personality and individuality are intensively researched in vertebrates and both concepts are increasingly applied to behavioral science in insects. However, only few studies have looked into individuality with respect to performance in learning and memory tasks. In vertebrates, individual learning capabilities vary considerably with respect to learning speed and learning rate. Likewise, honeybees express individual learning abilities in a wide range of classical conditioning protocols. Here, we study individuality in the learning and memory performance of cockroaches, both in classical and operant conditioning tasks. We implemented a novel classical (olfactory) conditioning paradigm where the conditioned response is established in the maxilla-labia response (MLR). Operant spatial learning was investigated in a forced two-choice task using a T-maze. Our results confirm individual learning abilities in classical conditioning of cockroaches that was reported for honeybees and vertebrates but contrast long-standing reports on stochastic learning behavior in fruit flies. In our experiments, most learners expressed a correct behavior after only a single learning trial showing a consistent high performance during training and test. We can further show that individual learning differences in insects are not limited to classical conditioning but equally appear in operant conditioning of the cockroach.

12.
Front Neural Circuits ; 12: 52, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30050415

RESUMO

Variability of spiking activity is ubiquitous throughout the brain but little is known about its contextual dependance. Trial-to-trial spike count variability, estimated by the Fano Factor (FF), and within-trial spike time irregularity, quantified by the coefficient of variation (CV), reflect variability on long and short time scales, respectively. We co-analyzed FF and the local coefficient of variation (CV2) in monkey motor cortex comparing two behavioral contexts, movement preparation (wait) and execution (movement). We find that the FF significantly decreases from wait to movement, while the CV2 increases. The more regular firing (expressed by a low CV2) during wait is related to an increased power of local field potential (LFP) beta oscillations and phase locking of spikes to these oscillations. In renewal processes, a widely used model for spiking activity under stationary input conditions, both measures are related as FF ≈ CV2. This expectation was met during movement, but not during wait where FF ≫ CV22. Our interpretation is that during movement preparation, ongoing brain processes result in changing network states and thus in high trial-to-trial variability (expressed by a high FF). During movement execution, the network is recruited for performing the stereotyped motor task, resulting in reliable single neuron output. Our interpretation is in the light of recent computational models that generate non-stationary network conditions.


Assuntos
Potenciais de Ação/fisiologia , Comportamento Animal/fisiologia , Eletrocorticografia/métodos , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Neurônios/fisiologia , Animais , Feminino , Macaca mulatta , Masculino
13.
eNeuro ; 5(3)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29938214

RESUMO

The mushroom body (MB) in insects is known as a major center for associative learning and memory, although exact locations for the correlating memory traces remain to be elucidated. Here, we asked whether presynaptic boutons of olfactory projection neurons (PNs) in the main input site of the MB undergo neuronal plasticity during classical odor-reward conditioning and correlate with the conditioned behavior. We simultaneously measured Ca2+ responses in the boutons and conditioned behavioral responses to learned odors in honeybees. We found that the absolute amount of the neural change for the rewarded but not for the unrewarded odor was correlated with the behavioral learning rate across individuals. The temporal profile of the induced changes matched with odor response dynamics of the MB-associated inhibitory neurons, suggestive of activity modulation of boutons by this neural class. We hypothesize the circuit-specific neural plasticity relates to the learned value of the stimulus and underlies the conditioned behavior of the bees.


Assuntos
Aprendizagem por Associação/fisiologia , Abelhas/fisiologia , Corpos Pedunculados/fisiologia , Plasticidade Neuronal , Neurônios Receptores Olfatórios/fisiologia , Terminações Pré-Sinápticas/fisiologia , Animais , Sinalização do Cálcio , Condicionamento Clássico/fisiologia , Feminino , Odorantes , Recompensa , Olfato
15.
Biol Cybern ; 112(1-2): 113-126, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28917001

RESUMO

How complex is the memory structure that honeybees use to navigate? Recently, an insect-inspired parsimonious spiking neural network model was proposed that enabled simulated ground-moving agents to follow learned routes. We adapted this model to flying insects and evaluate the route following performance in three different worlds with gradually decreasing object density. In addition, we propose an extension to the model to enable the model to associate sensory input with a behavioral context, such as foraging or homing. The spiking neural network model makes use of a sparse stimulus representation in the mushroom body and reward-based synaptic plasticity at its output synapses. In our experiments, simulated bees were able to navigate correctly even when panoramic cues were missing. The context extension we propose enabled agents to successfully discriminate partly overlapping routes. The structure of the visual environment, however, crucially determines the success rate. We find that the model fails more often in visually rich environments due to the overlap of features represented by the Kenyon cell layer. Reducing the landmark density improves the agents route following performance. In very sparse environments, we find that extended landmarks, such as roads or field edges, may help the agent stay on its route, but often act as strong distractors yielding poor route following performance. We conclude that the presented model is valid for simple route following tasks and may represent one component of insect navigation. Additional components might still be necessary for guidance and action selection while navigating along different memorized routes in complex natural environments.


Assuntos
Potenciais de Ação/fisiologia , Voo Animal/fisiologia , Modelos Neurológicos , Corpos Pedunculados/citologia , Neurônios/fisiologia , Reconhecimento Psicológico/fisiologia , Animais , Abelhas , Simulação por Computador , Redes Neurais de Computação , Vias Neurais/fisiologia , Reforço Psicológico , Comportamento Espacial , Sinapses/fisiologia
16.
Biol Cybern ; 112(1-2): 141-152, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29094187

RESUMO

The cerebellar-thalamo-cortical (CTC) system plays a major role in controlling timing and coordination of voluntary movements. However, the functional impact of this system on motor cortical sites has not been documented in a systematic manner. We addressed this question by implanting a chronic stimulating electrode in the superior cerebellar peduncle (SCP) and recording evoked multiunit activity (MUA) and the local field potential (LFP) in the primary motor cortex ([Formula: see text]), the premotor cortex ([Formula: see text]) and the somatosensory cortex ([Formula: see text]). The area-dependent response properties were estimated using the MUA response shape (quantified by decomposing into principal components) and the time-dependent frequency content of the evoked LFP. Each of these signals alone enabled good classification between the somatosensory and motor sites. Good classification between the primary motor and premotor areas could only be achieved when combining features from both signal types. Topographical single-site representation of the predicted class showed good recovery of functional organization. Finally, the probability for misclassification had a broad topographical organization. Despite the area-specific response features to SCP stimulation, there was considerable site-to-site variation in responses, specifically within the motor cortical areas. This indicates a substantial SCP impact on both the primary motor and premotor cortex. Given the documented involvement of these cortical areas in preparation and execution of movement, this result may suggest a CTC contribution to both motor execution and motor preparation. The stimulation responses in the somatosensory cortex were sparser and weaker. However, a functional role of the CTC system in somatosensory computation must be taken into consideration.


Assuntos
Mapeamento Encefálico , Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Vias Neurais/fisiologia , Tálamo/fisiologia , Animais , Estimulação Elétrica , Potenciais Evocados/fisiologia , Feminino , Análise de Fourier , Macaca fascicularis , Masculino , Análise de Componente Principal , Fatores de Tempo
17.
Biol Cybern ; 112(1-2): 81-98, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29075845

RESUMO

Balanced networks are a frequently employed basic model for neuronal networks in the mammalian neocortex. Large numbers of excitatory and inhibitory neurons are recurrently connected so that the numerous positive and negative inputs that each neuron receives cancel out on average. Neuronal firing is therefore driven by fluctuations in the input and resembles the irregular and asynchronous activity observed in cortical in vivo data. Recently, the balanced network model has been extended to accommodate clusters of strongly interconnected excitatory neurons in order to explain persistent activity in working memory-related tasks. This clustered topology introduces multistability and winnerless competition between attractors and can capture the high trial-to-trial variability and its reduction during stimulation that has been found experimentally. In this prospect article, we review the mean field description of balanced networks of binary neurons and apply the theory to clustered networks. We show that the stable fixed points of networks with clustered excitatory connectivity tend quickly towards firing rate saturation, which is generally inconsistent with experimental data. To remedy this shortcoming, we then present a novel perspective on networks with locally balanced clusters of both excitatory and inhibitory neuron populations. This approach allows for true multistability and moderate firing rates in activated clusters over a wide range of parameters. Our findings are supported by mean field theory and numerical network simulations. Finally, we discuss possible applications of the concept of joint excitatory and inhibitory clustering in future cortical network modelling studies.


Assuntos
Córtex Cerebral/citologia , Análise por Conglomerados , Modelos Neurológicos , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Animais , Córtex Cerebral/fisiologia , Simulação por Computador , Humanos
18.
Proc Biol Sci ; 283(1844)2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27974514

RESUMO

Humans and other mammals as well as honeybees learn a unilateral association between an olfactory stimulus presented to one side and a reward. In all of them, the learned association can be behaviourally retrieved via contralateral stimulation, suggesting inter-hemispheric communication. However, the underlying neuronal circuits are largely unknown and neural correlates of across-brain-side plasticity have yet not been demonstrated. We report neural plasticity that reflects lateral integration after side-specific odour reward conditioning. Mushroom body output neurons that did not respond initially to contralateral olfactory stimulation developed a unique and stable representation of the rewarded compound stimulus (side and odour) predicting its value during memory retention. The encoding of the reward-associated compound stimulus is delayed by about 40 ms compared with unrewarded neural activity, indicating an increased computation time for the read-out after lateral integration.


Assuntos
Abelhas/fisiologia , Memória , Corpos Pedunculados/fisiologia , Neurônios/fisiologia , Percepção Olfatória , Animais , Aprendizagem , Odorantes
19.
Front Behav Neurosci ; 8: 313, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25309366

RESUMO

Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3298 animals). We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response (CR) in learners, and the high stability of the CR during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24 h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla-Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled.

20.
Curr Biol ; 24(19): R957-9, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25291636

RESUMO

To code information efficiently, sensory systems use sparse representations. In a sparse code, a specific stimulus activates only few spikes in a small number of neurons. A new study shows that the temporal pattern across sparsely activated neurons encodes information, suggesting that the sparse code extends into the time domain.


Assuntos
Gafanhotos/fisiologia , Corpos Pedunculados/fisiologia , Percepção Olfatória , Animais , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...