Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 34(3): 1441-1451, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38530561

RESUMO

Aspirin is a commonly used nonsteroidal anti-inflammatory drug, associated with many adverse effects. The adverse effects of aspirin such as tinnitus, Reye's syndrome and gastrointestinal bleeding are caused due to conversion of aspirin into its active metabolite salicylic acid after oral intake. Glutathione is a naturally occurring antioxidant produced by the liver and nerve cells in the central nervous system. It helps to metabolize toxins, break down free radicles, and support immune function. This study aims to investigate and explore the possibility of inhibiting aspirin to salicylic acid conversion in presence of glutathione at a molecular level using spectroscopic techniques such as UV-Visible absorption, time-Resolved and time-dependent fluorescence and theoretical DFT/ TD-DFT calculations. The results of steady state fluorescence spectroscopy and time-dependent fluorescence indicated that the aspirin to salicylic acid conversion is considerably inhibited in presence of glutathione. Further, the results presented here might have significant clinical implications for individuals with variations in glutathione level.


Assuntos
Aspirina , Teoria da Densidade Funcional , Glutationa , Ácido Salicílico , Espectrometria de Fluorescência , Aspirina/farmacologia , Aspirina/química , Aspirina/metabolismo , Glutationa/metabolismo , Glutationa/química , Ácido Salicílico/metabolismo , Ácido Salicílico/química , Ácido Salicílico/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Fluorescência , Estrutura Molecular
2.
Environ Monit Assess ; 195(6): 703, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37212912

RESUMO

The habitation and environment are affected by the stable isotopes of caesium (Cs) and strontium (Sr), as well as by their radioactive isotopes. The current work gives insight on Alstonia scholaris' capacity to phytoextract stable caesium (Cs) and strontium (Sr), as well as the plant's ability to protect against the toxicity of both elements. Experiments with Cs [0-5 mM (CsCl)] and Sr [0-3 mM (SrCl2. 6H2O)] dosing in controlled light, temperature, and humidity condition in greenhouse for 21 days were undertaken. Cs and Sr accumulation in different plant parts was quantified with atomic absorption spectroscopy (AAS) and inductively coupled plasma-optical emission spectrometry (ICP-OES) respectively. Hyper-accumulation capacity for Cs and Sr was estimated with indices like transfer factor (TF) and translocation factors (TrF). The uptake pattern of caesium in Alstonia scholaris is 5452.8-24,771.4 mg/kg DW (TF = 85.2-57.6) and in the case of Sr is 1307.4-8705.7 mg/kg DW (TF = 85.3-1.46). The findings demonstrated the plant's ability to transfer Cs and Sr to aboveground biomass on the basis of dry weight, with the majority of the metals being deposited in the shoot rather than the root portion of the plant. For Cs and Sr, with increasing concentration, the plants exhibited the enzymatic expression for defence against metal toxicity by free radicals compared to control. Field emission electron microscopy with energy-dispersive spectroscopy (FESEM with EDS) was employed to assess the spatial distribution of Cs and Sr in plant leaf, indicating the accumulation of Cs, Sr, and their homologous components.


Assuntos
Alstonia , Estrôncio , Estrôncio/toxicidade , Alstonia/metabolismo , Hidroponia , Monitoramento Ambiental , Césio/metabolismo , Radioisótopos de Estrôncio
3.
Radiat Environ Biophys ; 61(3): 341-359, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35869396

RESUMO

Radionuclide contamination is a concerning threat due to unexpected nuclear disasters and authorized discharge of radioactive elements, both in the past and in present times. Use of atomic power for energy generation is associated with unresolved issues concerning storage of residues and contaminants. For example, the nuclear accidents in Chernobyl 1986 and Fukushima 2011 resulted in considerable deposition of cesium (Cs) in soil, along with other radionuclides. Among Cs radioactive variants, the anthropogenic radioisotope 137Cs (t½ = 30.16 years) is of serious environmental concern, owing to its rapid incorporation into biological systems and emission of ß and γ radiation during the decaying process. To remediate contaminated areas, mostly conventional techniques are applied that are not eco-friendly. Hence, an alternative green technology, i.e., phytoremediation, should in future be considered and implemented. This sustainable technology generates limited secondary waste and its objectives are to utilize hyper-accumulating plants to extract, stabilize, degrade, and filter the radionuclides. The review highlights plant mechanisms for up-taking radionuclides and influences of different environmental factors involved in the process, while considering its long-term effects.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos do Solo , Biodegradação Ambiental , Radioisótopos de Césio , Japão , Poluentes Radioativos do Solo/análise
4.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33875583

RESUMO

Understanding the motility behavior of bacteria in confining microenvironments, in which they search for available physical space and move in response to stimuli, is important for environmental, food industry, and biomedical applications. We studied the motility of five bacterial species with various sizes and flagellar architectures (Vibrio natriegens, Magnetococcus marinus, Pseudomonas putida, Vibrio fischeri, and Escherichia coli) in microfluidic environments presenting various levels of confinement and geometrical complexity, in the absence of external flow and concentration gradients. When the confinement is moderate, such as in quasi-open spaces with only one limiting wall, and in wide channels, the motility behavior of bacteria with complex flagellar architectures approximately follows the hydrodynamics-based predictions developed for simple monotrichous bacteria. Specifically, V. natriegens and V. fischeri moved parallel to the wall and P. putida and E. coli presented a stable movement parallel to the wall but with incidental wall escape events, while M. marinus exhibited frequent flipping between wall accumulator and wall escaper regimes. Conversely, in tighter confining environments, the motility is governed by the steric interactions between bacteria and the surrounding walls. In mesoscale regions, where the impacts of hydrodynamics and steric interactions overlap, these mechanisms can either push bacteria in the same directions in linear channels, leading to smooth bacterial movement, or they could be oppositional (e.g., in mesoscale-sized meandered channels), leading to chaotic movement and subsequent bacterial trapping. The study provides a methodological template for the design of microfluidic devices for single-cell genomic screening, bacterial entrapment for diagnostics, or biocomputation.


Assuntos
Fenômenos Fisiológicos Bacterianos/genética , Movimento/fisiologia , Alphaproteobacteria/fisiologia , Bactérias/crescimento & desenvolvimento , Biofilmes , Escherichia coli/fisiologia , Flagelos/fisiologia , Hidrodinâmica , Microfluídica/métodos , Modelos Biológicos , Pseudomonas putida/fisiologia , Vibrio/fisiologia
5.
ACS Omega ; 4(5): 8512-8521, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459941

RESUMO

We report a simple device that generates synchronized mechanical and electrical pressure waves for carrying out bacterial transformation. The mechanical pressure waves are produced by igniting a confined nanoenergetic composite material that provides ultrahigh pressure. Further, this device has an arrangement through which a synchronized electric field (of a time-varying nature) is initiated at a delay of ≈85 µs at the full width half-maxima point of the pressure pulse. The pressure waves so generated are incident to a thin aluminum-polydimethylsiloxane membrane that partitions the ignition chamber from the column of the mixture containing bacterial cells (Escherichia coli BL21) and 4 kb transforming DNA. A combination of mechanical and electrical pressure pulse created through the above arrangement ensures that the transforming DNA transports across the cell membrane into the cell, leading to a transformation event. This unique device has been successfully operated for efficient gene (∼4 kb) transfer into cells. The transformation efficacy of this device is found comparable to the other standard methods and protocols for carrying out the transformation.

6.
Sci Rep ; 9(1): 6257, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-31000743

RESUMO

The environmental considerations attributing to the escalation of carbon dioxide emissions have raised alarmingly. Consequently, the concept of sequestration and biological conversion of CO2 by photosynthetic microorganisms is gaining enormous recognition. In this study, in an attempt to discern the synergistic CO2 tolerance mechanisms, metabolic responses to increasing CO2 concentrations were determined for Synechococcus elongatus PCC 11801, a fast-growing, novel freshwater strain, using quantitative proteomics. The protein expression data revealed that the organism responded to elevated CO2 by not only regulating the cellular transporters involved in carbon-nitrogen uptake and assimilation but also by inducing photosynthesis, carbon fixation and glycolysis. Several components of photosynthetic machinery like photosystem reaction centers, phycobilisomes, cytochromes, etc. showed a marked up-regulation with a concomitant downshift in proteins involved in photoprotection and redox maintenance. Additionally, enzymes belonging to the TCA cycle and oxidative pentose phosphate pathway exhibited a decline in their expression, further highlighting that the demand for reduced cofactors was fulfilled primarily through photosynthesis. The present study brings the first-ever comprehensive assessment of intricate molecular changes in this novel strain while shifting from carbon-limited to carbon-sufficient conditions and may pave the path for future host and pathway engineering for production of sustainable fuels through efficient CO2 capture.


Assuntos
Proteínas de Bactérias/metabolismo , Dióxido de Carbono , Synechococcus/crescimento & desenvolvimento , Synechococcus/metabolismo , Dióxido de Carbono/farmacologia , Biologia Computacional , Proteoma/metabolismo , Proteômica/métodos , Reprodutibilidade dos Testes , Estresse Fisiológico , Synechococcus/efeitos dos fármacos
7.
OMICS ; 21(11): 665-677, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29091011

RESUMO

Dengue fever (DF) is a major global health burden with a pathophysiology that is still incompletely understood. Biomarkers that predict and explain susceptibility to DF and its progression to its more severe hemorrhagic form are much needed. DF is endemic in tropical and subtropical regions of the world, with a rapidly increasing incidence of disease severity. We conducted a clinical biomarker discovery study using both a case-control and longitudinal study design. Plasma proteome alterations in patients with DF (n = 12) and dengue hemorrhagic fever (DHF, n = 24) were analyzed in comparison to healthy controls (HCs, n = 16), using the isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomics methodology (false discovery rate of 1%, ≥2 peptides). Several proteins such as the alpha-2 macroglobulin, angiotensinogen, apolipoprotein B-100, serotransferrin, and ceruloplasmin were upregulated (fold change >1.2) in all DHF cases, and downregulated in DF (fold change <0.83), compared with HCs. Plasma cytokine profiling (8 DF, 8 DHF, and 8 HC) on two consecutive time points, at day 0 (day of admission) and days 5-7, found significant elevation in IL-1RA, IL-7, TNF-α, MCP1-MCAF, and MIP-1ß levels, but only in the DHF cases, which is the severe disease, and not in DF, compared with HCs (p < 0.05). These new observations on changes in the plasma proteome and cytokine profiles in patients with dengue infection identify several putative molecular leads for future biomarker development and precision medicine in relation to forecasting DF disease severity.


Assuntos
Biomarcadores/sangue , Citocinas/sangue , Dengue/diagnóstico , Proteômica/métodos , Índice de Gravidade de Doença , Adolescente , Adulto , Estudos de Casos e Controles , Dengue/sangue , Doenças Endêmicas , Feminino , Humanos , Incidência , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Medicina de Precisão , Fatores de Tempo
8.
J Clin Diagn Res ; 10(3): QD01-3, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27134950

RESUMO

Bilateral simultaneous Tubal Ectopic Pregnancy (BTP) is the rarest form of ectopic pregnancy. The incidence is higher in women undergoing assisted reproductive techniques or ovulation induction. The clinical presentation is unpredictable and there are no unique features to distinguish it from unilateral ectopic pregnancy. BTP continues to be a clinician's dilemma as pre-operative diagnosis is difficult and is commonly made during surgery. Treatment options are varied depending on site of ectopic pregnancy, extent of tubal damage and requirement of future fertility. We report a case of BTP which was diagnosed during surgery and propose an algorithm for management of such patients.

10.
Sci Rep ; 3: 3266, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24253282

RESUMO

The extremely low limit of detection (LOD) posed by global food and water safety standards necessitates the need to perform a rapid process of integrated detection with high specificity, sensitivity and repeatability. The work reported in this article shows a microchip platform which carries out an ensemble of protocols which are otherwise carried in a molecular biology laboratory to achieve the global safety standards. The various steps in the microchip include pre-concentration of specific microorganisms from samples and a highly specific real time molecular identification utilizing a q-PCR process. The microchip process utilizes a high sensitivity antibody based recognition and an electric field mediated capture enabling an overall low LOD. The whole process of counting, sorting and molecular identification is performed in less than 4 hours for highly dilute samples.


Assuntos
Microbiologia Ambiental , Procedimentos Analíticos em Microchip/métodos , Reação em Cadeia da Polimerase em Tempo Real , Carga Bacteriana , Microbiologia Ambiental/normas , Escherichia coli/genética , Dispositivos Lab-On-A-Chip , Procedimentos Analíticos em Microchip/normas , Microeletrodos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...