Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet Microbe ; 2(9): e472-e480, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34485958

RESUMO

BACKGROUND: Escherichia coli is a leading cause of bloodstream infections. Developing interventions to reduce E coli infections requires an understanding of the frequency of nosocomial transmission, but the available evidence is scarce. We aimed to detect and characterise transmission of E coli and associated plasmids in a hospital setting. METHODS: In this prospective observational cohort study, patients were admitted to two adult haematology wards at the Cambridge University Hospitals NHS Foundation Trust in England. Patients aged 16 years and older who were treated for haematological malignancies were included. Stool samples were collected from study participants on admission, once per week, and at discharge. We sequenced multiple E coli isolates (both extended spectrum ß-lactamase [ESBL]-producing and non-ESBL-producing) from each stool sample. A genetic threshold to infer E coli transmission was defined by maximum within-host single nucleotide polymorphism (SNP) diversity and the probability of drawing observed pairs of between-patient isolates at different SNP thresholds. Putative transmission clusters were identified when sequences were less than the genetic threshold. Epidemiological links for each transmission event were investigated. We sequenced all E coli positive blood samples from the two adult haematology wards. FINDINGS: We recruited 174 (51%) of 338 adult patients admitted to the wards between May 13 and Nov 13, 2015. We obtained and cultured 376 stool samples from 149 patients, of which 152 samples from 97 (65%) patients grew E coli. Whole-genome sequencing was done on 970 isolates. We identified extensive diversity in the bacterial population (90 sequence types) and mixed E coli sequence type carriage. 24 (26%) patients carried two sequence types, 12 (13%) carried three, and six (6%) patients carried four or more sequence types. Using a 17 SNP cutoff we identified ten clusters in 20 patients. The largest cluster contained seven patients, whereas four patients were included in multiple clusters. Strong epidemiological links were found between patients in seven clusters. 17 (11%) of 149 patients had stool samples positive for ESBL-producing E coli, the most common of which was associated with bla CTX-M-15 (12 [71%] of 17). Long-read sequencing revealed that bla CTX-M-15 was often integrated into the chromosome, with little evidence for plasmid transmission. Seven patients developed E coli bloodstream infection, four with identical strains to those in their stool; two of these had documented nosocomial acquisition. INTERPRETATION: We provide evidence of bacterial transmission and endogenous infection during routine care by integrating genomic and epidemiological data and by determining a genetic cutoff informed by within-host diversity in the studied population. Our findings challenge single colony-based investigations, and the widely accepted notion of plasmid spread. FUNDING: UK Department of Health, Wellcome Trust, UK National Institute for Health Research.


Assuntos
Infecção Hospitalar , Infecções por Escherichia coli , Adulto , Antibacterianos/farmacologia , Infecção Hospitalar/epidemiologia , Farmacorresistência Bacteriana , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Genômica , Humanos , Estudos Prospectivos , beta-Lactamases/genética
2.
Nat Microbiol ; 6(1): 103-111, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33106672

RESUMO

Nosocomial acquisition and transmission of vancomycin-resistant Enterococcus faecium (VREfm) is the driver for E. faecium carriage in hospitalized patients, which, in turn, is a risk factor for invasive infection in immunocompromised patients. In the present study, we provide a comprehensive picture of E. faecium transmission in an entire sampled patient population using a sequence-driven approach. We prospectively identified and followed 149 haematology patients admitted to a hospital in England for 6 months. Patient stools (n = 376) and environmental swabs (n = 922) were taken at intervals and cultured for E. faecium. We sequenced 1,560 isolates (1,001 stool, 559 environment) and focused our genomic analyses on 1,477 isolates (95%) in the hospital-adapted clade A1. Of 101 patients who provided two or more stool samples, 40 (40%) developed E. faecium carriage after admission based on culture, compared with 64 patients (63%) based on genomic analysis (73% VREfm). Half of 922 environmental swabs (447, 48%) were positive for VREfm. Network analysis showed that, of 111 patients positive for the A1 clade, 67 had strong epidemiological and genomic links with at least one other patient and/or their direct environment, supporting nosocomial transmission. Six patients (3.4%) developed an invasive E. faecium infection from their own gut-colonizing strain, which was preceded by nosocomial acquisition of the infecting isolate in half of these. Two informatics approaches (subtype categorization to define phylogenetic clusters and the development of an SNP cut-off for transmission) were central to our analyses, both of which will inform the future translation of E. faecium sequencing into routine outbreak detection and investigation. In conclusion, we showed that carriage and environmental contamination by the hospital-adapted E. faecium lineage were hyperendemic in our study population and that improved infection control measures will be needed to reduce hospital acquisition rates.


Assuntos
Infecção Hospitalar/epidemiologia , Enterococcus faecium/genética , Infecções por Bactérias Gram-Positivas/transmissão , Controle de Infecções/métodos , Enterococos Resistentes à Vancomicina/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Álcoois/farmacologia , Antibacterianos/farmacologia , Clorexidina/farmacologia , Infecção Hospitalar/transmissão , Surtos de Doenças , Desinfetantes/farmacologia , Enterococcus faecium/isolamento & purificação , Genoma Bacteriano/genética , Infecções por Bactérias Gram-Positivas/patologia , Humanos , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Estudos Prospectivos , Vancomicina/farmacologia , Enterococos Resistentes à Vancomicina/isolamento & purificação , Sequenciamento Completo do Genoma , Adulto Jovem
3.
Clin Infect Dis ; 70(2): 219-226, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30840764

RESUMO

BACKGROUND: Klebsiella pneumoniae is a human, animal, and environmental commensal and a leading cause of nosocomial infections, which are often caused by multiresistant strains. We evaluate putative sources of K. pneumoniae that are carried by and infect hospital patients. METHODS: We conducted a 6-month survey on 2 hematology wards at Addenbrooke's Hospital, Cambridge, United Kingdom, in 2015 to isolate K. pneumoniae from stool, blood, and the environment. We conducted cross-sectional surveys of K. pneumoniae from 29 livestock farms, 97 meat products, the hospital sewer, and 20 municipal wastewater treatment plants in the East of England between 2014 and 2015. Isolates were sequenced and their genomes compared. RESULTS: Klebsiella pneumoniae was isolated from stool of 17/149 (11%) patients and 18/922 swabs of their environment, together with 1 bloodstream infection during the study and 4 others over a 24-month period. Each patient carried 1 or more lineages that was unique to them, but 2 broad environmental contamination events and patient-environment transmission were identified. Klebsiella pneumoniae was isolated from cattle, poultry, hospital sewage, and 12/20 wastewater treatment plants. There was low genetic relatedness between isolates from patients/their hospital environment vs isolates from elsewhere. Identical genes encoding cephalosporin resistance were carried by isolates from humans/environment and elsewhere but were carried on different plasmids. CONCLUSION: We identified no patient-to-patient transmission and no evidence for livestock as a source of K. pneumoniae infecting humans. However, our findings reaffirm the importance of the hospital environment as a source of K. pneumoniae associated with serious human infection.


Assuntos
Infecção Hospitalar , Infecções por Klebsiella , Saúde Única , Animais , Antibacterianos/uso terapêutico , Bovinos , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/epidemiologia , Estudos Transversais , Inglaterra/epidemiologia , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Reino Unido , beta-Lactamases
4.
Microb Genom ; 5(5)2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31107200

RESUMO

We examined whether genomic surveillance of Escherichia coli in wastewater could capture the dominant E. coli lineages associated with bloodstream infection and livestock in the East of England, together with the antibiotic-resistance genes circulating in the wider E. coli population. Treated and untreated wastewater was taken from 20 municipal treatment plants in the East of England, half in direct receipt of acute hospital waste. All samples were culture positive for E. coli, and all but one were positive for extended-spectrum ß-lactamase (ESBL)-producing E. coli. The most stringent wastewater treatment (tertiary including UV light) did not eradicate ESBL-E. coli in 2/3 cases. We sequenced 388 E. coli (192 ESBL, 196 non-ESBL). Multilocus sequence type (ST) diversity was similar between plants in direct receipt of hospital waste versus the remainder (93 vs 95 STs, respectively). We compared the genomes of wastewater E. coli with isolates from bloodstream infection (n=437), and livestock farms and retail meat (n=431) in the East of England. A total of 19/20 wastewater plants contained one or more of the three most common STs associated with bloodstream infection (ST131, ST73, ST95), and 14/20 contained the most common livestock ST (ST10). In an analysis of 1254 genomes (2 cryptic E. coli were excluded), wastewater isolates were distributed across the phylogeny and intermixed with isolates from humans and livestock. Ten blaCTX-M elements were identified in E. coli isolated from wastewater, together with a further 47 genes encoding resistance to the major antibiotic drug groups. Genes encoding resistance to colistin and the carbapenems were not detected. Genomic surveillance of E. coli in wastewater could be used to monitor new and circulating lineages and resistance determinants of public-health importance.


Assuntos
Escherichia coli/genética , Genômica , Águas Residuárias/microbiologia , Purificação da Água , Animais , Estudos Transversais , Inglaterra , Monitoramento Ambiental , Escherichia coli/classificação , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Genes Bacterianos/genética , Hospitais , Humanos , Sequências Repetitivas Dispersas/genética , Gado/microbiologia , Tipagem de Sequências Multilocus , Filogenia , Saúde Pública , beta-Lactamases/genética
5.
Genome Res ; 29(4): 626-634, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30898881

RESUMO

Vancomycin-resistant Enterococcus faecium (VREfm) is a leading cause of healthcare-associated infection. Reservoirs of VREfm are largely assumed to be nosocomial although there is a paucity of data on alternative sources. Here, we describe an integrated epidemiological and genomic analysis of E. faecium associated with bloodstream infection and isolated from wastewater. Treated and untreated wastewater from 20 municipal treatment plants in the East of England, United Kingdom was obtained and cultured to isolate E. faecium, ampicillin-resistant E. faecium (AREfm), and VREfm. VREfm was isolated from all 20 treatment plants and was released into the environment by 17/20 plants, the exceptions using terminal ultraviolet light disinfection. Median log10 counts of AREfm and VREfm in untreated wastewater from 10 plants in direct receipt of hospital sewage were significantly higher than 10 plants that were not. We sequenced and compared the genomes of 423 isolates from wastewater with 187 isolates associated with bloodstream infection at five hospitals in the East of England. Among 481 E. faecium isolates belonging to the hospital-adapted clade, we observed genetic intermixing between wastewater and bloodstream infection, with highly related isolates shared between a major teaching hospital in the East of England and 9/20 plants. We detected 28 antibiotic resistance genes in the hospital-adapted clade, of which 23 were represented in bloodstream, hospital sewage, and municipal wastewater isolates. We conclude that our findings are consistent with widespread distribution of hospital-adapted VREfm beyond acute healthcare settings with extensive release of VREfm into the environment in the East of England.


Assuntos
Antibacterianos/toxicidade , Infecção Hospitalar/microbiologia , Farmacorresistência Bacteriana , Enterococcus faecium/isolamento & purificação , Genoma Bacteriano , Vancomicina/toxicidade , Águas Residuárias/microbiologia , Inglaterra , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/genética
6.
mBio ; 10(1)2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670621

RESUMO

Livestock have been proposed as a reservoir for drug-resistant Escherichia coli that infect humans. We isolated and sequenced 431 E. coli isolates (including 155 extended-spectrum ß-lactamase [ESBL]-producing isolates) from cross-sectional surveys of livestock farms and retail meat in the East of England. These were compared with the genomes of 1,517 E. coli bacteria associated with bloodstream infection in the United Kingdom. Phylogenetic core genome comparisons demonstrated that livestock and patient isolates were genetically distinct, suggesting that E. coli causing serious human infection had not directly originated from livestock. In contrast, we observed highly related isolates from the same animal species on different farms. Screening all 1,948 isolates for accessory genes encoding antibiotic resistance revealed 41 different genes present in variable proportions in human and livestock isolates. Overall, we identified a low prevalence of shared antimicrobial resistance genes between livestock and humans based on analysis of mobile genetic elements and long-read sequencing. We conclude that within the confines of our sampling framework, there was limited evidence that antimicrobial-resistant pathogens associated with serious human infection had originated from livestock in our region.IMPORTANCE The increasing prevalence of E. coli bloodstream infections is a serious public health problem. We used genomic epidemiology in a One Health study conducted in the East of England to examine putative sources of E. coli associated with serious human disease. E. coli from 1,517 patients with bloodstream infections were compared with 431 isolates from livestock farms and meat. Livestock-associated and bloodstream isolates were genetically distinct populations based on core genome and accessory genome analyses. Identical antimicrobial resistance genes were found in livestock and human isolates, but there was limited overlap in the mobile elements carrying these genes. Within the limitations of sampling, our findings do not support the idea that E. coli causing invasive disease or their resistance genes are commonly acquired from livestock in our region.


Assuntos
Monitoramento Epidemiológico , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli/classificação , Variação Genética , Sequências Repetitivas Dispersas , Saúde Única , Animais , Biologia Computacional , Estudos Transversais , Farmacorresistência Bacteriana , Inglaterra/epidemiologia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Genes Bacterianos , Genômica , Humanos , Gado , Carne/microbiologia , Prevalência , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
7.
Microb Genom ; 4(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29498619

RESUMO

There is growing evidence that patients with Clostridiumdifficile-associated diarrhoea often acquire their infecting strain before hospital admission. Wastewater is known to be a potential source of surface water that is contaminated with C. difficile spores. Here, we describe a study that used genome sequencing to compare C. difficile isolated from multiple wastewater treatment plants across the East of England and from patients with clinical disease at a major hospital in the same region. We confirmed that C. difficile from 65 patients were highly diverse and that most cases were not linked to other active cases in the hospital. In total, 186 C. difficile isolates were isolated from effluent water obtained from 18 municipal treatment plants at the point of release into the environment. Whole genome comparisons of clinical and environmental isolates demonstrated highly related populations, and confirmed extensive release of toxigenic C. difficile into surface waters. An analysis based on multilocus sequence types (STs) identified 19 distinct STs in the clinical collection and 38 STs in the wastewater collection, with 13 of 44 STs common to both clinical and wastewater collections. Furthermore, we identified five pairs of highly similar isolates (≤2 SNPs different in the core genome) in clinical and wastewater collections. Strategies to control community acquisition should consider the need for bacterial control of treated wastewater.


Assuntos
Clostridioides difficile/genética , DNA Bacteriano/isolamento & purificação , Diarreia/epidemiologia , Águas Residuárias/microbiologia , Teorema de Bayes , Clostridioides difficile/isolamento & purificação , Estudos Transversais , DNA Bacteriano/genética , Diarreia/microbiologia , Inglaterra/epidemiologia , Genoma Bacteriano , Genômica , Humanos , Tipagem de Sequências Multilocus , Estudos Retrospectivos , Análise de Sequência de DNA , Gerenciamento de Resíduos
8.
Genome Med ; 9(1): 119, 2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29282103

RESUMO

BACKGROUND: Enterococcus faecium is a leading cause of hospital-acquired infection, particularly in the immunocompromised. Here, we use whole genome sequencing of E. faecium to study within-host evolution and the transition from gut carriage to invasive disease. METHODS: We isolated and sequenced 180 E. faecium from four immunocompromised patients who developed bloodstream infection during longitudinal surveillance of E. faecium in stool and their immediate environment. RESULTS: A phylogenetic tree based on single nucleotide polymorphisms (SNPs) in the core genome of the 180 isolates demonstrated several distinct clones. This was highly concordant with the population structure inferred by Bayesian methods, which contained four main BAPS (Bayesian Analysis of Population Structure) groups. The majority of isolates from each patient resided in a single group, but all four patients also carried minority populations in stool from multiple phylogenetic groups. Bloodstream isolates from each case belonged to a single BAPS group, which differed in all four patients. Analysis of 87 isolates (56 from blood) belonging to a single BAPS group that were cultured from the same patient over 54 days identified 30 SNPs in the core genome (nine intergenic, 13 non-synonymous, eight synonymous), and 250 accessory genes that were variably present. Comparison of these genetic variants in blood isolates versus those from stool or environment did not identify any variants associated with bloodstream infection. The substitution rate for these isolates was estimated to be 128 (95% confidence interval 79.82 181.77) mutations per genome per year, more than ten times higher than previous estimates for E. faecium. Within-patient variation in vancomycin resistance associated with vanA was common and could be explained by plasmid loss, or less often by transposon loss. CONCLUSIONS: These findings demonstrate the diversity of E. faecium carriage by individual patients and significant within-host diversity of E. faecium, but do not provide evidence for adaptive genetic variation associated with invasion.


Assuntos
Bacteriemia/microbiologia , Enterococcus faecium/genética , Evolução Molecular , Infecções por Bactérias Gram-Positivas/microbiologia , Hospedeiro Imunocomprometido , Bacteriemia/imunologia , Farmacorresistência Bacteriana/genética , Enterococcus faecium/classificação , Enterococcus faecium/isolamento & purificação , Genoma Bacteriano , Infecções por Bactérias Gram-Positivas/imunologia , Humanos , Polimorfismo de Nucleotídeo Único
9.
Microb Genom ; 3(7): e000114, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-29026655

RESUMO

Dissemination of carbapenem resistance among pathogenic Gram-negative bacteria is a looming medical emergency. Efficient spread of resistance within and between bacterial species is facilitated by mobile genetic elements. We hypothesized that wastewater contributes to the dissemination of carbapenemase-producing Enterobacteriaceae (CPE), and studied this through a cross-sectional observational study of wastewater in the East of England. We isolated clinically relevant species of CPE in untreated and treated wastewater, confirming that waste treatment does not prevent release of CPE into the environment. We observed that CPE-positive plants were restricted to those in direct receipt of hospital waste, suggesting that hospital effluent may play a role in disseminating carbapenem resistance. We postulated that plasmids carrying carbapenemase genes were exchanged between bacterial hosts in sewage, and used short-read (Illumina) and long-read (MinION) technologies to characterize plasmids encoding resistance to antimicrobials and heavy metals. We demonstrated that different CPE species (Enterobacter kobei and Raoultella ornithinolytica) isolated from wastewater from the same treatment plant shared two plasmids of 63 and 280 kb. The former plasmid conferred resistance to carbapenems (blaOXA-48), and the latter to numerous drug classes and heavy metals. We also report the complete genome sequence for Enterobacter kobei. Small, portable sequencing instruments such as the MinION have the potential to improve the quality of information gathered on antimicrobial resistance in the environment.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , DNA Bacteriano/genética , Transferência Genética Horizontal , Plasmídeos/genética , Esgotos/microbiologia , Proteínas de Bactérias , Enterobacteriáceas Resistentes a Carbapenêmicos/classificação , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Inglaterra , Análise de Sequência de DNA , beta-Lactamases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...