Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rec ; 24(1): e202300005, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36807755

RESUMO

Aluminum-air batteries (AABs) are regarded as attractive candidates for usage as an electric vehicle power source due to their high theoretical energy density (8100 Wh kg-1 ), which is considerably higher than that of lithium-ion batteries. However, AABs have several issues with commercial applications. In this review, we outline the difficulties and most recent developments in AABs technology, including electrolytes and aluminum anodes, as well as their mechanistic understanding. First, the impact of the Al anode and alloying on battery performance is discussed. Then we focus on the impact of electrolytes on battery performances. The possibility of enhancing electrochemical performances by adding inhibitors to electrolytes is also investigated. Additionally, the use of aqueous and non-aqueous electrolytes in AABs is also discussed. Finally, the challenges and potential future research areas for the advancement of AABs are suggested.

2.
Chem Rec ; 24(1): e202200310, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36861955

RESUMO

Aqueous Zn-ion battery systems (AZIBs) have emerged as the most dependable solution, as demonstrated by successful systematic growth over the past few years. Cost effectivity, high performance and power density with prolonged life cycle are some major reason of the recent progress in AZIBs. Development of vanadium-based cathodic materials for AZIBs has appeared widely. This review contains a brief display of the basic facts and history of AZIBs. An insight section on zinc storage mechanism ramifications is given. A detailed discussion is conducted on features of high-performance and long life-time cathodes. Such features include design, modifications, electrochemical and cyclic performance, along with stability and zinc storage pathway of vanadium based cathodes from 2018 to 2022. Finally, this review outlines obstacles and opportunities with encouragement for gathering a strong conviction for future advancement in vanadium-based cathodes for AZIBs.

3.
Chem Rec ; 24(1): e202300017, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37010435

RESUMO

Aluminum air batteries (AABs) are a desirable option for portable electronic devices and electric vehicles (EVs) due to their high theoretical energy density (8100 Wh K-1 ), low cost, and high safety compared to state-of-the-art lithium-ion batteries (LIBs). However, numerous unresolved technological and scientific issues are preventing AABs from expanding further. One of the key issues is the catalytic reaction kinetics of the air cathode as the fuel (oxygen) for AAB is reduced there. Additionally, the performance and price of an AAB are directly influenced by an air electrode integrated with an oxygen electrocatalyst, which is thought to be the most crucial element. In this study, we covered the oxygen chemistry of the air cathode as well as a brief discussion of the mechanistic insights of active catalysts and how they catalyze and enhance oxygen chemistry reactions. There is also extensive discussion of research into electrocatalytic materials that outperform Pt/C such as nonprecious metal catalysts, metal oxide, perovskites, metal-organic framework, carbonaceous materials, and their composites. Finally, we provide an overview of the present state, and possible future direction for air cathodes in AABs.

4.
ACS Omega ; 8(31): 28355-28366, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576688

RESUMO

Regardless of the adverse effects of Bisphenol A (BPA), its use in industry and in day-to-day life is increasing at a higher rate every year. In the present study, a simple and reliable chemical approach was used to develop an efficient BPA sensor based on a Co-Ru-based heterometallic supramolecular polymer (polyCoRu). Surface morphology and elemental analysis were examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Furthermore, functional group analysis was accomplished by Fourier transform infrared spectroscopy (FT-IR). UV-vis spectroscopy was used to confirm the complexation in the ratio of 0.5:0.5:1 (metal 1/metal 2/ligand). Electrochemical characterization of the synthesized polyCoRu was conducted using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses. The study identified two distinct linear dynamic ranges for the detection of BPA, 0.197-2.94 and 3.5-17.72 µM. The regression equation was utilized to determine the sensitivity and limit of detection (LOD), resulting in values of 0.6 µA cm-2 µM-1 and 0.02 µM (S/N = 3), respectively. The kinetics of BPA oxidation at the polyCoRu/GCE were investigated to evaluate the heterogeneous rate constant (k), charge transfer coefficient (α), and the number of electrons transferred during the oxidation and rate-determining step. A probable electrochemical reaction mechanism has been presented for further comprehending the phenomena occurring at the electrode surface. The practical applicability of the fabricated electrode was analyzed using tap water, resulting in a high percentage of recovery ranging from 96 to 105%. Furthermore, the reproducibility and stability data demonstrated the excellent performance of polyCoRu/GCE.

5.
Molecules ; 25(20)2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33080946

RESUMO

In this report, we discussed rapid, facile one-pot green synthesis of gold and silver nanoparticles (AuNPs and AgNPs) by using tuber extract of Amorphophallus paeoniifolius, and evaluated their antibacterial activity. AuNPs and AgNPs were synthesized by mixing their respective precursors (AgNO3 and HAuCl4) with tuber extract of Amorphophallus paeoniifolius as the bio-reducing agent. Characterization of AuNPs and AgNPs were confirmed by applying UV-vis spectroscopy, field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), and energy dispersive X-ray spectroscopy (EDS). From UV-vis characterization, surface plasmon resonance spectra were found at 530 nm for AuNPs and 446 nm for AgNPs. XRD data confirmed that both synthesized nanoparticles were face-centered cubic in crystalline nature, and the average crystallite sizes for the assign peaks were 13.3 nm for AuNPs and 22.48 nm for AgNPs. FTIR data evaluated the characteristic peaks of different phytochemical components of tuber extract, which acted as the reducing agent, and possibly as stabilizing agents. The antibacterial activity of synthesized AuNPs and AgNPs were examined in Muller Hinton agar, against two Gram-positive and four Gram-negative bacteria through the disc diffusion method. AuNPs did not show any inhibitory effect, while AgNPs showed good inhibitory effect against both Gram-positive and Gram-negative bacteria.


Assuntos
Amorphophallus/química , Antibacterianos/química , Ouro/química , Nanopartículas Metálicas/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Química Verde , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Tubérculos/química , Prata/química , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...