Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 47(19): 4869-4872, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36181137

RESUMO

A dual-output thin-disk picosecond laser operating at 100 W with 1 kHz repetition rate is reported in this Letter. By electronically adjusting the amplitude of the optical seed pulses that are injected into the laser cavity, the energy extracted from the gain medium can be shared between two pulses. Amplified double pulses are subsequently spatially separated into two independent beams by a fast Pockels cell, compressed in one common compressor, and frequency-doubled with ∼70% efficiency. This approach significantly decreases strain on the optics, as well as nonlinear effects, and is advantageous for power scaling.

2.
Opt Lett ; 46(22): 5655-5658, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780429

RESUMO

We report on a 1 kHz, 515 nm laser system, based on a commercially available 230 W average power Yb:YAG thin-disk regenerative amplifier, developed for pumping one of the last optical parametric chirped pulse amplification (OPCPA) stages of the Allegra laser system at ELI Beamlines. To avoid problems with self-focusing of picosecond pulses, the 1030 nm output pulses are compressed and frequency doubled with an LBO crystal in vacuum. Additionally, development of a thermal management system was needed to ensure stable phase matching conditions at high average power. The resulting 515 nm pulses have an energy of more than 120 mJ with SHG efficiency of 60% and an average RMS stability of 1.1% for more than 8 h.

3.
Appl Opt ; 60(3): 533-538, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33690425

RESUMO

Vacuum chambers are frequently used in high-energy, high-peak-power laser systems to prevent deleterious nonlinear effects, which can result from propagation in air. In the vacuum sections of the Allegra laser system at ELI-Beamlines, we observed degradation of several optical elements due to laser-induced contamination (LIC). This contamination is present on surfaces with laser intensity above 30GW/cm2 with wavelengths of 515, 800, and 1030 nm. It can lead to undesired absorption on diffraction gratings, mirrors, and crystals and ultimately to degradation of the laser beam profile. Because the Allegra laser is intended to be a high-uptime source for users, such progressive degradation is unacceptable for operation. Here, we evaluate three methods of removing LIC from optics in vacuum. One of them, the radio-frequency-generated plasma cleaning, appears to be a suitable solution from the perspective of operating a reliable, on-demand source for users.

4.
Rev Sci Instrum ; 89(2): 023113, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29495811

RESUMO

A robust and simple method is presented for ensuring constant energy and pointing of a high average power solid state laser on a target. In addition to providing long-term stability, this scheme also eliminates any drifts in energy or pointing resulting from the initial warm-up after a cold start. This is achieved using two separate feedback loops: one loop stabilizes the pointing of the beam external to the amplifier cavity and the other locks the cavity mode to have optimum overlap with the pump spot on the active medium. The key idea of the cavity mode stabilization is to monitor the overlap of the cavity mode and the gain medium with a camera and control it with an actively controlled, intra-cavity mirror. While this method is demonstrated on a thin-disk regenerative amplifier, it can also be applied to a wide variety of solid state laser amplifiers.

5.
Opt Lett ; 42(4): 843-846, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198879

RESUMO

We present a stable supercontinuum (SC) generated in a bulk YAG crystal, pumped by 3 ps chirped pulses at 1030 nm. The SC is generated in a loose focus geometry in a 13 cm long YAG crystal, allowing for stable and robust single-filament generation. The SC energy stability exceeds that of the pump laser by almost a factor of 3. Additionally, we show that the SC spectrum has long-term stability and that the SC is coherent and compressible by compressing the portions of SC spectra close to the corresponding Fourier limit. This makes the picosecond-pulse-driven SC a suitable stable seed for OPCPA amplifiers.

6.
Rev Sci Instrum ; 88(1): 013109, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28147631

RESUMO

We report on the design and performance of a fiber-based, multi-channel laser amplifier seed pulse distribution system. The device is designed to condition and distribute low energy laser pulses from a mode-locked oscillator to multiple, highly synchronized, high energy amplifiers integrated into a laser beamline. Critical functions such as temporal pulse stretching well beyond 100 ps/nm, pulse picking, and fine control over the pulse delay up to 300 ps are all performed in fiber eliminating the need for bulky and expensive grating stretchers, Pockels cells, and delay lines. These functions are characterized and the system as a whole is demonstrated by seeding two high energy amplifiers in the laser beamline. The design of this system allows for complete computer control of all functions, including tuning of dispersion, and is entirely hands-free. The performance of this device and its subsystems will be relevant to those developing lasers where reliability, size, and cost are key concerns in addition to performance; this includes those developing large-scale laser systems similar to ours and also those developing table-top experiments and commercial systems.

7.
Opt Express ; 24(16): 17843-8, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-27505751

RESUMO

We report on a broadband OPCPA system, pumped at 515 nm by frequency doubled Yb:YAG thin disk lasers. The system delivers 11.3 mJ pulses at a central wavelength of 800 nm with a spatial beam quality of M2 = 1.25 and > 25% pump-to-signal conversion efficiency. The broadband pulses were demonstrated to be compressible to 12 fs using a chirped mirror compressor.

8.
Opt Express ; 24(6): 5728-33, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27136770

RESUMO

We report on a frequency-doubled picosecond Yb:YAG thin disk regenerative amplifier, developed as a pump laser for a kilohertz repetition rate OPCPA. At a repetition rate of 1 kHz, the compressed output of the regenerative amplifier has a pulse duration of 1.2 ps and pulse energy of 90 mJ with energy stability of σ < 0.8% and M2 < 1.2. The pulses are frequency doubled in an LBO crystal yielding 42 mJ at 515 nm.

9.
IEEE Trans Microw Theory Tech ; 63(10 Pt 1): 3016-3025, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26568639

RESUMO

A design of a microwave noninvasive continuous blood glucose monitoring sensor and its interference test results are presented. The novelty of the proposed sensor is that it comprises two spatially separated split-ring resonators, where one interacts with the change in glucose level of a sample under test while the other ring is used as a reference. The reference ring has a slightly different resonant frequency and is desensitized to the sample owing to its location, thus allowing changes in temperature to be calibrated out. From an oral glucose tolerance test with two additional commercially available sensors (blood strip and continuous glucose monitor) in parallel, we obtained encouraging performance for our sensor comparable with those of the commercial sensors. The effects of endogenous interferents common to all subjects, i.e., common sugars, vitamins (ascorbic acid), and metabolites (uric acid) have also been investigated by using a large Franz cell assembly. From the interference test, it is shown that the change in sensor response is dominated by changes in glucose level for concentrations relevant to blood, and the effects of interferents are negligible in comparison.

10.
Opt Express ; 22(24): 30281-6, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25606958

RESUMO

A simple and compact scheme for synchronization of the pump and signal pulses for short-pulse OPCPA is demonstrated. Relative timing jitter of 17 fs RMS is achieved (1% of the pump pulse duration) and the system remains locked for hours. The scheme uses a balanced optical cross correlator to detect relative delays between the pump and signal pulses and can be operated with just 10's of µJ of pump energy and pJ-level signal energies.


Assuntos
Fenômenos Ópticos , Processamento de Sinais Assistido por Computador , Retroalimentação , Análise Espectral , Fatores de Tempo
11.
Artigo em Inglês | MEDLINE | ID: mdl-25004476

RESUMO

In this paper, a novel design for an ultrasonic power transmission system designed for use in aircraft structural monitoring systems is described. The prototype system uses ultrasonic Lamb waves to carry energy along plates, such as those used in aircraft structures, and commercially available piezoelectric patch transducers as the transmitter and receiver. This sets it apart from other acoustic power transmission systems reported to date. The optimum configuration transmitted 12.7 mW of power across a distance of 54 cm in a 1.5-mm-thick aluminum plate, while being driven by a 20-Vpp, 35-kHz sinusoidal electric signal. This is in the same order of magnitude as the power required by the wireless sensors nodes of a structural health monitoring system currently being developed by Cardiff University and its partners. Thus, the power transmission system can be considered a viable component of the power source combination considered for the sensor nodes, which will also include vibration and thermal energy harvesting. The paper describes the design and optimization of the transmission and reception circuits with the use of inductive compensation. The use of laser vibrometry to characterize the transducers and to understand the signal propagation between them is also reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...