Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 126(3): 444-452, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35030001

RESUMO

The thermodynamic properties of key compounds Mg(B3H8)2, MgB2H6, MgB10H10, Mg(B11H14)2, Mg3(B3H6)2, and MgB12H12, proposed to be formed in the release of hydrogen from magnesium borohydride Mg(BH4)2 and the uptake of hydrogen by MgB2, have been investigated using solid-state density functional theory (DFT) calculations. More accurate tretment of the cell-size effects with respect to the entropies was also investigated in order to improve the accuracy of the thermodynamic properties of complex borohydrides. We find that the zero-point energy corrections can lower the electronic energies of reaction by 20-30 kJ/(mol H2) for these intermediates, while adding the thermal and entropy contibutions results in a total decrease of up to ∼50 kJ/(mol H2). Although our treatment lowers the calculated formation energy of Mg(B3H8)2, it is still too high to explain the experimental observation of B3H8-. We discuss possible reasons for this disparity and propose that the formation of B3H8- and H- in a disordered amorphous phase has a large energy difference compared to the phase-separated Mg(B3H8)2 and MgH2 considered in calculations. A comparison of the experimental and NMR chemical shifts calculated within a DFT approach for known species Mg(BH4)2, Mg(B3H8)2, Mg(B11H14)2, MgB10H10, and MgB12H12 provides validation for predicting the chemical shifts of the other compounds which are yet to be confirmed experimentally. These include MgB2H6 and the proposed trianion species Mg3(B3H6)2 that both have favorable thermodynamics for reversible hydrogen storage in Mg(BH4)2 without the formation of MgH2 as a coproduct which could phase separate and inhibit rehydrogenation.

2.
Phys Chem Chem Phys ; 22(1): 368-378, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31819933

RESUMO

Metal borohydrides are considered promising materials for hydrogen storage applications due to their high volumetric and gravimetric hydrogen density. Recently, different Lewis bases have been complexed with Mg(BH4)2 in efforts to improve hydrogenation/dehydrogenation properties. Notably, Mg(BH4)2·xTHF adducts involving tetrahydrofuran (THF; C4H8O) have proven to be especially interesting. This work focuses on exploring the physicochemical properties of the THF-rich Mg(BH4)2·3THF adduct using neutron-scattering methods and molecular DFT calculations. Structural analysis, based on neutron diffraction measurements of Mg(11BH4)2·3TDF (D - deuterium), has confirmed a lowering of the symmetry upon cooling, from monoclinic C2/c to P1[combining macron] via a triclinic distortion. Vibrational properties are strongly influenced by the THF environment, showing a splitting in spectral features as a result of changes in the bond lengths, force constants, and lowering of the overall symmetry. Interestingly, the orientational mobilities of the BH4- anions obtained from quasielastic neutron scattering (QENS) are not particularly sensitive to the presence of THF and compare well with the mobilities of BH4- anions in unsolvated Mg(BH4)2. The QENS data point to uniaxial 180° jump reorientations of the BH4- anions around a preferred C2 anion symmetry axis. The THF rings are also found to be orientationally mobile, undergoing 180° reorientational jumps around their C2 molecular symmetry axis with jump frequencies about an order of magnitude lower than those for the BH4- anions. In contrast, no dynamical behavior of the THF rings is observed with QENS for a more THF-deficient 2Mg(BH4)2·THF adduct. This lack of comparable THF mobility may reflect a stronger Mg2+-THF bonding interaction for lower THF/Mg(BH4)2 stoichiometric ratios, which is consistent with DFT calculations showing a decrease in the binding energy with each additional THF ring in the adduct. Based on the combined experimental and computational results, we propose that combining THF and Mg(BH4)2 is beneficial to (i) preventing weakly bound THF from coming free from the Mg2+ cation and reducing the concentration of any unwanted impurity in the hydrogen and (ii) disrupting the stability of the crystalline phase, leading to a lower melting point and enhanced kinetics for any potential hydrogen storage applications.

3.
Phys Chem Chem Phys ; 19(2): 1097-1107, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27942648

RESUMO

The electronic and optical properties of α-(Fe1-xVx)2O3 at low (x = 0.04) and high (x = 0.5) doping levels are investigated using a combination of periodic and embedded cluster approaches, and time-dependent density functional theory. At low V concentrations the onset of the optical absorption is ∼0.5 eV (i.e., nearly 1.6 eV lower than that in pure α-Fe2O3) and corresponds to the electron transitions from V 3d to Fe 3d* orbitals. At high V concentrations, optical absorption energies and intensities are sensitive to specific arrangements of Fe and V atoms and their spin configuration that determine Fe-V hybridization. The onset of the lowest inter-vanadium absorption band in the case of Fe2O3/V2O3 hetero-structures is as low as ∼0.3 eV and the corresponding peak is at ∼0.7 eV. In contrast, in the case of solid solutions this peak has lower intensity and is shifted to higher energy (∼1.2 eV). Analysis of the orbital character of electronic excitation suggests that Fe2O3/V2O3 hetero-structures absorb light much more effectively than random alloys, thus promoting efficient photo-induced carrier generation. These predictions can be tested in α-(Fe1-xVx)2O3 thin films synthesized with well-controlled spatial distribution of Fe and V species.

4.
Nano Lett ; 14(11): 6539-46, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25310514

RESUMO

Cycloparaphenylenes, the simplest structural unit of armchair carbon nanotubes, have unique optoelectronic properties counterintuitive in the class of conjugated organic materials. Our time-dependent density functional theory study and excited state dynamics simulations of cycloparaphenylene chromophores provide a simple and conceptually appealing physical picture explaining experimentally observed trends in optical properties in this family of molecules. Fully delocalized degenerate second and third excitonic states define linear absorption spectra. Self-trapping of the lowest excitonic state due to electron-phonon coupling leads to the formation of spatially localized excitation in large cycloparaphenylenes within 100 fs. This invalidates the commonly used Condon approximation and breaks optical selection rules, making these materials superior fluorophores. This process does not occur in the small molecules, which remain inefficient emitters. A complex interplay of symmetry, π-conjugation, conformational distortion and bending strain controls all photophysics of cycloparaphenylenes.

5.
J Chem Theory Comput ; 9(2): 1144-54, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26588757

RESUMO

Five different Density Functional Theory (DFT) models (ranging from pure GGA to long-range-corrected hybrid functionals) were used to study computationally the nature of the self-trapped electronic states in oligophenylene vinylenes. The electronic excitations in question include the lowest singlet (S1) and triplet (T1(†)) excitons (calculated using Time Dependent DFT (TD-DFT) method), positive (P(+)) and negative (P(-)) polarons, and the lowest triplet (T1) states (computed with the Self-Consistent Field (SCF) scheme). The polaron formation (spatial localization of excitations) is observed only with the use of range-corrected hybrid DFT models including long-range electronic exchange interactions. The extent of localization for all studied excitations is found to be invariant with respect to the size of the oligomer chain in their corresponding optimal geometries. We have analyzed the interdependence between the extent of the geometrical distortion and the localization of the orbital and spin density, and have observed that the localization of the P(+) and P(-) charged species is quite sensitive to solvent polarization effects and the character of the DFT functional used, rather than the structural deformations. In contrast, the localization of neutral states, S1 and T1(†), is found to follow the structural distortions. Notably, T1 excitation obtained with the mean field SCF approach is always strongly localized in range-corrected hybrid DFT models. The molecular orbital energetics of these excitations was further investigated to identify the relationship between state localization and the corresponding orbital structure. A characteristic stabilization (destabilization) of occupied (virtual) orbitals is observed in hybrid DFT models, compared to tight-binding model-like orbital filling in semilocal GGA functionals. The molecular and natural orbital representation allows visualization of the spatial extent of the underlying electronic states. In terms of stabilization energies, neutral excitons have higher binding energies compared to charged excitations. In contrast, the polaronic species exhibit the highest solvation energies among all electronic states studied.

6.
J Phys Chem Lett ; 3(9): 1222-8, 2012 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-26288058

RESUMO

The two-photon absorption (2PA) spectrum of an organic single crystal is reported. The crystal is grown by self-nucleation of a subsaturated hot solution of acetonitrile, and is composed of an asymmetrical donor-π-acceptor cyanine-like dye molecule. To our knowledge, this is the first report of the 2PA spectrum of single crystals made from a cyanine-like dye. The linear and nonlinear properties of the single crystalline material are investigated and compared with the molecular properties of a toluene solution of its monomeric form. The maximum polarization-dependent 2PA coefficient of the single crystal is 52 ± 9 cm/GW, which is more than twice as large as that for the inorganic semiconductor CdTe with a similar absorption edge. The optical properties, linear and nonlinear, are strongly dependent upon incident polarization due to anisotropic molecular packing. X-ray diffraction analysis shows π-stacking dimers formation in the crystal, similar to H-aggregates. Quantum chemical calculations demonstrate that this dimerization leads to the splitting of the energy bands and the appearance of new red-shifted 2PA bands when compared to the solution of monomers. This trend is opposite to the blue shift in the linear absorption spectra upon H-aggregation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...