Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 12(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35953957

RESUMO

Early experience of a complex environment can improve biologically relevant traits related to coping abilities. However, the mechanisms underlying these positive effects have not been well explored. We hypothesized that giving chicks possibilities to express choices within relevant resources could be an important part of the mechanism, as well as a novel way to increase environmental complexity. In a balanced design, laying hen hatchlings of the white hybrid Bovans Robust were reared in a "single-choice" environment (single litter and perch type) or a "multi-choice" environment (four different litter and perch types). Immunological and behavioral indicators of chicks' coping abilities were explored in this experimental study at three weeks of age. Chicks from "multi-choice" environments had shorter durations of tonic immobility, lower heterophil/lymphocyte ratios, higher natural antibody concentrations, and were more successful in gaining novel food rewards in a repeated opportunity test. These results imply that chicks having access to variation within resource types were less fearful, experienced less chronic stress, would be more able to cope with pathogenic challenges, and potentially had an improved learning ability. To conclude, the more complex environment, achieved by increasing chicks' possibilities to choose, seemed to make chicks better prepared for potential challenges, boosting their adaptive capacities and their ability to make the most of opportunities.

2.
PLoS One ; 14(1): e0210270, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30640921

RESUMO

Birds kept in commercial production systems can be exposed to multiple stressors from early life and this alters the development of different morphological, immunological and behavioural indicators. We explore the hypothesis that provision of a complex environment during early life, better prepares birds to cope with stressful events as well as buffers them against future unpredictable stressful episodes. In this study, 96 one day old pullets were randomly distributed in eight pens (12 birds/pen). Half of the chicks (N = 48) were assigned to a Complex Environment (CENV: with perches, a dark brooder etc.) the others to a Simple Environment (SENV: without enrichment features). Half of the birds from each of these treatments were assigned to a No Stress (NSTR, 33°C) or to an acute Cold Stress (CSTR, 18-20°C) treatment during six hours on their second day of life. At four weeks of age, chicks with these four different backgrounds were exposed to an Intermittent Stressful Challenges Protocol (ISCP). In an immunological test indicative of pro-inflammatory status Phytohemagglutinin-P (PHA-P), the response of CSTR birds was ameliorated by rearing chicks in a CENV as they had a similar response to NSTR chicks and a significantly better pro-inflammatory response than those CSTR birds reared in a SENV (five days after the CSTR treatment was applied). A similar better response when coping with new challenges (the ISCP) was observed in birds reared in a CENV compared to those from a SENV. Birds reared in the CENV had a lower heterophil/lymphocyte ratio after the ISCP than birds reared in SENV, independently of whether or not they had been exposed to CSTR early in life. No effects of stress on general behaviour were detected, however, the provision of a CENV increased resting behaviour, which may have favoured stress recover. Additionally, we found that exposure to cold stress at an early age might have rendered birds more vulnerable to future stressful events. CSTR birds had lower humoral immune responses (sheep red blood cells induced antibodies) after the ISCP and started using elevated structures in the CENV later compared to their NSTR conspecifics. Our study reflects the importance of the early provision of a CENV in commercial conditions to reduce negative stress-related effects. Within the context of the theory of adaptive plasticity, our results suggest that the early experience of the birds had long lasting effects on the modulation of their phenotypes.


Assuntos
Comportamento Animal/fisiologia , Galinhas/fisiologia , Meio Ambiente , Estresse Fisiológico , Animais , Comportamento Alimentar , Abrigo para Animais
3.
Stress ; 21(3): 257-266, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29478357

RESUMO

Avian require comfortable temperatures for optimal development and heat stress is a high concern in warm weather countries. We aimed to assess the dynamics of immunoendocrine and biochemical variables responses of birds exposed to a heat stressor applied during daylight hours, during the chronic stress and the recovery periods. We hypothesize that variables involved in the birds response will be differentially and gradually modified during those periods. Female quail (n = 210) were housed in six rearing boxes. At 29 days of age, the temperature in three boxes was increased from 24 to 34 °C during the light period throughout the nine days (Stress Treatment). The other three boxes remained at 24 °C and were used as controls. The subsequent 12 days were considered as recovery period. Different sets of 12 birds/treatment were blood-sampled at 29 (basal), 32, 35, 38 (stress), 41, 44, 47, and 50 (recovery) days of age, respectively. Immunoendocrine (corticosterone, lymphoproliferation, heterophil/lymphocyte ratio (H/L), and antibody response) and biochemical (glucose, total proteins, globulins, and albumin) variables were assessed. During stress, progressive corticosterone and H/L increments, and antibody titers and lymphoproliferation decreases were detected. No clear pattern of changes was found in biochemical variables. During recovery, while corticosterone and lymphoproliferation had recovered three days after the stressor ended, H/L and antibody responses required respectively nine and 12 days to recover to their basal levels, respectively. Findings suggest that immunity is already threatened when heat stress is sustained for three or more days. However, the system appears resilient, needing six to 12 days to recover to their basal responses.


Assuntos
Coturnix/fisiologia , Sistema Endócrino/fisiopatologia , Transtornos de Estresse por Calor/fisiopatologia , Sistema Imunitário/fisiopatologia , Animais , Formação de Anticorpos/fisiologia , Proliferação de Células , Corticosterona/sangue , Feminino , Inflamação/sangue , Inflamação/fisiopatologia , Contagem de Leucócitos , Linfócitos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...