Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(9): 10220-10232, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463321

RESUMO

Non-Newtonian fluid flow is significant in engineering and biomedical applications such as thermal exchangers, electrical cooling mechanisms, nuclear reactor cooling, drug delivery, blood flow analysis, and tissue engineering. The Caputo operator has emerged as a prevalent tool in fractional calculus, garnering widespread recognition. This research aims to introduce a novel derivative by merging the proportional and Caputo operators, resulting in the fractional operator known as the constant proportional Caputo. In order to demonstrate this newly defined operator's dynamic qualities, it was employed in the analysis of the unsteady Casson flow model. In addition, the current work shows an analytical analysis to determine the Soret effect on the fractionalized MHD Casson fluid over an oscillating vertical plate. Fractional partial differential equations (PDEs) are used to formulate the problem along with IBCs. The introduction of appropriate nondimensional variables converts the PDEs into dimensionless form. The precise solutions to the fractional governing PDEs are then determined by the Laplace transform method. Velocity, concentration, and temperature profiles; the impacts of the Prandtl number; fractional parameter ß and γ; and Soret and Schmidt numbers are graphically depicted. The profiles of temperature, concentration, and velocity rise with rising time and fractional parameters. Interestingly, as the Casson flow parameter is higher, fluid velocity decreases closest to the plate but increases away from the plate. Tables showing the findings for the skin-friction coefficient, Sherwood, and Nusselt numbers for a range of flow-controlling parameter values are provided. Furthermore, an investigation is undertaken to compare fractionalized and ordinary velocity fields. The results suggest that the fractional model employing a constant proportional derivative exhibits a quicker decay than the model incorporating conventional Caputo and Caputo-Fabrizio operators.

2.
Pestic Biochem Physiol ; 197: 105649, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072524

RESUMO

Thiram is a plant fungicide, its excessive use has exceeded the required environmental standards. It causes tibial dyschondroplasia (TD) in broilers which is a common metabolic disease that affects the growth plate of tibia bone. It has been studied that many microRNAs (miRNAs) are involved in the differentiation of chondrocytes however, their specific roles and mechanisms have not been fully investigated. The selected features of tibial chondrocytes of broilers were studied in this experiment which included the expression of miR-181b-1-3p and the genes related to WIF1/Wnt/ß-catenin pathway in chondrocytes through qRT-PCR, western blot and immunofluorescence. The correlation between miR-181b-1-3p and WIF1 was determined by dual luciferase reporter gene assay whereas, the role of miR-181b-1-3p and WIF1/Wnt/ß-catenin in chondrocyte differentiation was determined by mimics and inhibitor transfection experiments. Results revealed that thiram exposure resulted in decreased expression of miR-181b-1-3p and increased expression of WIF1 in chondrocytes. A negative correlation was also observed between miR-181b-1-3p and WIF1. After overexpression of miR-181b-1-3p, the expression of ACAN, ß-catenin and Col2a1 increased but the expression of GSK-3ß decreased. It was observed that inhibition of WIF1 increased the expression of ALP, ß-catenin, Col2a1 and ACAN but decreased the expression of GSK-3ß. It is concluded that miR-181b-1-3p can reverse the inhibitory effect of thiram on cartilage proliferation and differentiation by inhibiting WIF1 expression and activating Wnt/ß-catenin signaling pathway. This study provides a new molecular target for the early diagnosis and possible treatment of TD in broilers.


Assuntos
MicroRNAs , Osteocondrodisplasias , Animais , Condrócitos/metabolismo , Galinhas/genética , Galinhas/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Osteocondrodisplasias/genética , Osteocondrodisplasias/veterinária , Osteocondrodisplasias/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo , beta Catenina/farmacologia , Tiram , Tíbia/metabolismo , MicroRNAs/genética , Proliferação de Células/genética
3.
Microb Pathog ; 183: 106322, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37633503

RESUMO

During the last decade, researchers had started to focus on the relationship between intestinal parasitic infection and variation of intestinal microflora. Cryptosporidium is a widely known opportunistic and zoonotic pathogen. Several studies have shown that Cryptosporidium infection has impact to alter the gut microflora. However, there are only few studies referring to the fungal microflora changes in response to Cryptosporidium infection in highland ruminants. Therefore, the present study was performed for exploring the alternations of intestinal fungal microbiota in yaks after exposure to Cryptosporidium infection. In present study, Amplicon sequencing of ITS regions was used to study the variations of fungal microflora in yaks. After filtering the raw data, over 45 000 and 62 000 clean data were obtained in uninfected and infected yaks, respectively. By using alpha diversity analysis, it was found that there is no significant difference in the richness and evenness when positive samples were compared with negative ones, whereas intestinal fungal communities in different taxa in yaks were changed. The results of present study depicted that 2-phyla and 21-genera in the infected animals had significantly (P < 0.05) changed. These genera were Septoria, Coniothyrium, Cleistothelebolus, Bensingtonia, Cystobasidium, Filobasidium, Coprotus, Carex, Blumeria, Coprinellus, Leucosporidium, Phialophora, Isolepis, Ascobolus, Thecaphora, Mortierella, Urocystis, Symmetrospora and Lasiobolus. In addition, we found variations in 28 enzymes suggesting that the function of microbiota was also affected. It is concluded that there are drastic changes in the fungal microflora and microbiota functions after exposure to Cryptosporidium infection in yak. Our results help to focus on the prompt way for the development of new therapies to control Cryptosporidiosis.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Microbioma Gastrointestinal , Micobioma , Animais , Bovinos , Cryptosporidium/genética
4.
Vet Sci ; 9(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36288189

RESUMO

Porcine parvovirus (PPV) disease is a worldwide spread animal disease with high infection rate and serious impact on meat economy causing significant losses in livestock production. The purpose of this paper is to investigate and analyze the regional seroprevalence of PPV in Tibetan pigs in Tibet and evaluate risk factors related to the disease. A total of 356 serum samples of Tibetan pigs were collected from four counties and districts in Tibet, and anti-PPV antibodies were detected by using a commercial competitive ELISA. Our results show a seroprevalence of 91.01% (324 serum samples were found to be positive for anti-PPV antibodies). The positive rate among different district was 100%, 96.55%, 93.68% and 72.83%, respectively in the Mainling County, in Bayi district, Nang County and Bomê County. We found significant differences between different age and gender groups; particularly female animals show a seroprevalence of 96.03% while the males only 83.46%. From the perspective of the growth stage, our results indicate that subadults show a seroprevalence significative higher than other age groups (100%). This study describes for the first time the PPV seroprevalence among Tibetan pigs characterizing risk factors involved in its transmission and providing information to be taken into account for eventual surveillance or eradication plans.

6.
Front Pharmacol ; 9: 987, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245628

RESUMO

One of the major challenges of nano-biotechnology is to engineer potent antimicrobial nanostructures (NS) with high biocompatibility. Keeping this in view, we have performed aqueous olive leaf extract mediated one pot facile synthesis of CuO-NS and CeO2-NS. Prepared NS were homogenous, less than 26 nm in size, and small crystallite units as revealed by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. Fourier transform infrared spectroscopy (FTIR) of CuO-NS and CeO2-NS showed typical Cu-O prints around 592-660 cm-1 and Ce-O bond vibrations at 453 cm-1. The successful capping of CuO-NS and CeO2-NS by compounds present in the plant extract was further validated by high performance liquid chromatography (HPLC) and thermal gravimetric analysis (TGA). Active phyto-chemicals from the leaf extract simultaneously acted as strong reducing as well as capping agent in the NS synthesis. NS engineered in the present study showed antibacterial potential at extremely low concentration against highly virulent multidrug-resistant (MDR) gram-negative strains (Escherichia coli, Enterobacter cloacae, Acinetobacter baumannii and Pseudomonas aeruginosa), alarmed by World Health Organization (WHO). Furthermore, CuO-NS and CeO2-NS did not show any cytotoxicity on HEK-293 cell lines and Brine shrimp larvae indicating that the NS green synthesized in the present study are biocompatible.

7.
IET Nanobiotechnol ; 12(4): 405-411, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29768221

RESUMO

Mounting-up economic losses to annual crops yield due to micronutrient deficiency, fertiliser inefficiency and increasing microbial invasions (e.g. Xanthomonas cempestri attack on tomatoes) are needed to be solved via nano-biotechnology. So keeping this in view, the authors' current study presents the new horizon in the field of nano-fertiliser with highly nutritive and preservative effect of green fabricated zinc oxide-nanostructures (ZnO-NSs) during Lycopersicum esculentum (tomato) growth dynamics. ZnO-NS prepared via green chemistry possesses highly homogenous crystalline structures well-characterised through ultraviolet and visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscope. The ZnO-NS average size was found as small as 18 nm having a crystallite size of 5 nm. L. esculentum were grown in different concentrations of ZnO-NS to examine the different morphological parameters includes time of seed germination, germination percentage, the number of plant leaves, the height of the plant, average number of branches, days count for flowering and fruiting time period along with fruit quantity. Promising results clearly predict that bio-fabricated ZnO-NS at optimum concentration resulted as growth booster and dramatically triggered the plant yield.


Assuntos
Química Verde/métodos , Nanopartículas Metálicas/química , Extratos Vegetais/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Óxido de Zinco/farmacologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Tamanho da Partícula , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Óxido de Zinco/química , Óxido de Zinco/metabolismo
8.
IET Nanobiotechnol ; 11(8): 935-941, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29155392

RESUMO

To grapple with multidrug resistant bacterial infections, implementations of antibacterial nanomedicines have gained prime attention of the researchers across the globe. Nowadays, zinc oxide (ZnO) at nano-scale has emerged as a promising antibacterial therapeutic agent. Keeping this in view, ZnO nanostructures (ZnO-NS) have been synthesised through reduction by P. aphylla aqueous extract without the utilisation of any acid or base. Structural examinations via scanning electron microscopy (SEM) and X-ray diffraction have revealed pure phase morphology with highly homogenised average particle size of 18 nm. SEM findings were further supplemented by transmission electron microscopy examinations. The characteristic Zn-O peak has been observed around 363 nm using ultra-violet-visible spectroscopy. Fourier-transform infrared spectroscopy examination has also confirmed the formation of ZnO-NS through detection of Zn-O bond vibration frequencies. To check the superior antibacterial activity of ZnO-NS, the authors' team has performed disc diffusion assay and colony forming unit testing against multidrug resistant E. coli, S. marcescens and E. cloacae. Furthermore, protein kinase inhibition assay and cytotoxicity examinations have revealed that green fabricated ZnO-NS are non-hazardous, economical, environmental friendly and possess tremendous potential to treat lethal infections caused by multidrug resistant pathogens.


Assuntos
Antibacterianos/farmacologia , Química Verde , Nanopartículas Metálicas/química , Periploca/química , Extratos Vegetais/farmacologia , Óxido de Zinco/síntese química , Contagem de Colônia Microbiana , Farmacorresistência Bacteriana Múltipla , Enterobacter cloacae/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Serratia marcescens/efeitos dos fármacos , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Óxido de Zinco/química
9.
IET Nanobiotechnol ; 11(5): 557-561, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28745289

RESUMO

A growing trend within nanomedicine has been the fabrication of self-delivering supramolecular nanomedicines containing a high and fixed drug content ensuring eco-friendly conditions. This study reports on green synthesis of silica nanoparticles (Si-NPs) using Azadirachta indica leaves extract as an effective chelating agent. X-ray diffraction analysis and Fourier transform-infra-red spectroscopic examination were studied. Scanning electron microscopy analysis revealed that the average size of particles formed via plant extract as reducing agent without any surfactant is in the range of 100-170 nm while addition of cetyltrimethyl ammonium bromide were more uniform with 200 nm in size. Streptomycin as model drug was successfully loaded to green synthesised Si-NPs, sustain release of the drug from this conjugate unit were examined. Prolong release pattern of the adsorbed drug ensure that Si-NPs have great potential in nano-drug delivery keeping the environment preferably biocompatible, future cytotoxic studies in this connection is helpful in achieving safe mode for nano-drug delivery.


Assuntos
Antibacterianos/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanopartículas , Dióxido de Silício/química , Estreptomicina/administração & dosagem , Azadirachta/química , Materiais Biocompatíveis , Cetrimônio/química , Microscopia Eletrônica de Varredura , Folhas de Planta/química , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Tensoativos/química , Difração de Raios X
10.
IET Nanobiotechnol ; 11(4): 463-468, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28530197

RESUMO

In present investigation, copper oxide (CuO) nanostructures have been prepared via green chemistry. Olea europaea leaf extract act as strong chelating agent for tailoring physical as well as bio-medical characteristics of CuO at the nano-size. Physical characterisation such as scanning electron microscope analysis depicts the formation of homogenised spherical shape nanoparticles (NPs) with average size of 42 nm. X-ray diffraction and Fourier transform infrared spectroscopy further confirmed the crystalline pure phase and monoclinic structure. High performance liquid chromatography (HPLC) testing is performed to evaluate the relative concentration of bioactive molecules in the O. europaea leaf extract. From HPLC results capping action of organic molecules around CuO-NPs is hypothesised. The antimicrobial potency of biosynthesised CuO-NPs have been evaluated using colony forming unit (CFU) counting assay and disc diffusion method which shows a significant zone of inhibition against bacterial and fungal strains may be highly potential for future antimicrobial pharmaceutics. Furthermore, reduction of various precursors by plant extract will reduce environmental impact over chemical synthesis.


Assuntos
Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Cobre/administração & dosagem , Cobre/química , Fungos/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Olea/química , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/síntese química , Sobrevivência Celular/efeitos dos fármacos , Estudos de Viabilidade , Química Verde/métodos , Teste de Materiais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Folhas de Planta/química , Resultado do Tratamento
11.
Int J Nanomedicine ; 11: 5015-5025, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27785011

RESUMO

This article reports the green fabrication of cerium oxide nanoparticles (CeO2 NPs) using Olea europaea leaf extract and their applications as effective antimicrobial agents. O. europaea leaf extract functions as a chelating agent for reduction of cerium nitrate. The resulting CeO2 NPs exhibit pure single-face cubic structure, which is examined by X-ray diffraction, with a uniform spherical shape and a mean size 24 nm observed through scanning electron microscopy and transmission electron microscopy. Ultraviolet-visible spectroscopy confirms the characteristic absorption peak of CeO2 NPs at 315 nm. Fourier transform infrared spectroscopy reflects stretching frequencies at 459 cm-1, showing utilization of natural components for the production of NPs. Thermal gravimetric analysis predicts the successful capping of CeO2 NPs by bioactive molecules present in the plant extract. The antimicrobial studies show significant zone of inhibition against bacterial and fungal strains. The higher activities shown by the green synthesized NPs than the plant extract lead to the conclusion that they can be effectively used in biomedical application. Furthermore, reduction of cerium salt by plant extract will reduce environmental impact over chemical synthesis.


Assuntos
Anti-Infecciosos/farmacologia , Cério/química , Nanopartículas , Olea/química , Anti-Infecciosos/química , Avaliação Pré-Clínica de Medicamentos/métodos , Química Verde , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Nanopartículas/química , Extratos Vegetais/química , Folhas de Planta/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
12.
Front Plant Sci ; 7: 1330, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27630655

RESUMO

In this study, we have investigated the effect of copper oxide nanoparticles (CuO-NPs) on callogenesis and regeneration of Oryza sativa L (Super Basmati, Basmati 2000, Basmati 370, and Basmati 385). In this regard, CuO-NPs have been bio-synthesized via Azadirachta indica leaf extract. Scanning electron microscope (SEM) analysis depicts average particle size of 40 ± 5 nm with highly homogenous and spherical morphology. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) have been employed to confirm the phase purity of the synthesized NPs. It is found that CuO-NPs exhibit very promising results against callus induction. It is attributed to the fact that green synthesized CuO-NPs at optimum dosage possess very supportive effects on plant growth parameters. In contrast to callogenesis, differential regeneration pattern has been observed against all of the examined O. sativa L. indigenous verities. Overall observation concludes that CuO, being one of the essential plant nutrients, has greatly tailored the nutritive properties at nano-scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...