Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels Bioprod ; 17(1): 17, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38291537

RESUMO

Camelina neglecta is a new diploid Brassicaceae species, which has great research value because of its close relationship with the hexaploid oilseed crop Camelina sativa. Here, we report a chromosome-level assembly of C. neglecta with a total length of 210 Mb. By adopting PacBio sequencing and Hi-C technology, the C. neglecta genome was assembled into 6 chromosomes with scaffold N50 of 29.62 Mb. C. neglecta has undergone the whole-genome triplication (γ) shared among eudicots and two whole-genome duplications (α and ß) shared by crucifers, but it has not undergone a specific whole-genome duplication event. By synteny analysis between C. neglecta and C. sativa, we successfully used the method of calculating Ks to distinguish the three subgenomes of C. sativa and determined that C. neglecta was closest to the first subgenome (SG1) of C. sativa. Further, transcriptomic analysis revealed the key genes associated with seed oil biosynthesis and its transcriptional regulation, including SAD, FAD2, FAD3, FAE1, ABI3, WRI1 and FUS3 displaying high expression levels in C. neglecta seeds. The high representability of C. neglecta as a model species for Camelina-based biotechnology research has been demonstrated for the first time. In particular, floral Agrobacterium tumefaciens infiltration-based transformation of C. neglecta, leading to overexpression of CvLPAT2, CpDGAT1 and CvFatB1 transgenes, was demonstrated for medium-chain fatty acid accumulation in C. neglecta seed oil. This study provides an important genomic resource and establishes C. neglecta as a new model for oilseed biotechnology research.

2.
Plants (Basel) ; 10(6)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072473

RESUMO

Seeds of castor (Ricinus communis) are enriched in oil with high levels of the industrially valuable fatty acid ricinoleic acid (18:1OH), but production of this plant is limited because of the cooccurrence of the ricin toxin in its seeds. Lesquerella (Physaria fendleri) is being developed as an alternative industrial oilseed because its seeds accumulate lesquerolic acid (20:1OH), an elongated form of 18:1OH in seed oil which lacks toxins. Synthesis of 20:1OH is through elongation of 18:1OH by a lesquerella elongase, PfKCS18. Oleic acid (18:1) is the substrate for 18:1OH synthesis, but it is also used by fatty acid desaturase 2 (FAD2) and FAD3 to sequentially produce linoleic and linolenic acids. To develop lesquerella that produces 18:1OH-rich seed oils such as castor, RNA interference sequences targeting KCS18, FAD2 and FAD3 were introduced to lesquerella to suppress the elongation and desaturation steps. Seeds from transgenic lines had increased 18:1OH to 1.1-26.6% compared with that of 0.4-0.6% in wild-type (WT) seeds. Multiple lines had reduced 18:1OH levels in the T2 generation, including a top line with 18:1OH reduced from 26.7% to 19%. Transgenic lines also accumulated more 18:1 than that of WT, indicating that 18:1 is not efficiently used for 18:1OH synthesis and accumulation. Factors limiting 18:1OH accumulation and new targets for further increasing 18:1OH production are discussed. Our results provide insights into complex mechanisms of oil biosynthesis in lesquerella and show the biotechnological potential to tailor lesquerella seeds to produce castor-like industrial oil functionality.

3.
Front Plant Sci ; 12: 652319, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968108

RESUMO

Pennycress (Thlaspi arvense L.) is being domesticated as an oilseed cash cover crop to be grown in the off-season throughout temperate regions of the world. With its diploid genome and ease of directed mutagenesis using molecular approaches, pennycress seed oil composition can be rapidly tailored for a plethora of food, feed, oleochemical and fuel uses. Here, we utilized Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 technology to produce knockout mutations in the FATTY ACID DESATURASE2 (FAD2) and REDUCED OLEATE DESATURATION1 (ROD1) genes to increase oleic acid content. High oleic acid (18:1) oil is valued for its oxidative stability that is superior to the polyunsaturated fatty acids (PUFAs) linoleic (18:2) and linolenic (18:3), and better cold flow properties than the very long chain fatty acid (VLCFA) erucic (22:1). When combined with a FATTY ACID ELONGATION1 (fae1) knockout mutation, fad2 fae1 and rod1 fae1 double mutants produced ∼90% and ∼60% oleic acid in seed oil, respectively, with PUFAs in fad2 fae1 as well as fad2 single mutants reduced to less than 5%. MALDI-MS spatial imaging analyses of phosphatidylcholine (PC) and triacylglycerol (TAG) molecular species in wild-type pennycress embryo sections from mature seeds revealed that erucic acid is highly enriched in cotyledons which serve as storage organs, suggestive of a role in providing energy for the germinating seedling. In contrast, PUFA-containing TAGs are enriched in the embryonic axis, which may be utilized for cellular membrane expansion during seed germination and seedling emergence. Under standard growth chamber conditions, rod1 fae1 plants grew like wild type whereas fad2 single and fad2 fae1 double mutant plants exhibited delayed growth and overall reduced heights and seed yields, suggesting that reducing PUFAs below a threshold in pennycress had negative physiological effects. Taken together, our results suggest that combinatorial knockout of ROD1 and FAE1 may be a viable route to commercially increase oleic acid content in pennycress seed oil whereas mutations in FAD2 will likely require at least partial function to avoid fitness trade-offs.

4.
Metab Eng ; 57: 63-73, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31654815

RESUMO

Soybean seeds produce oil enriched in oxidatively unstable polyunsaturated fatty acids (PUFAs) and are also a potential biotechnological platform for synthesis of oils with nutritional omega-3 PUFAs. In this study, we engineered soybeans for seed-specific expression of a barley homogentisate geranylgeranyl transferase (HGGT) transgene alone and with a soybean γ-tocopherol methyltransferase (γ-TMT) transgene. Seeds for HGGT-expressing lines had 8- to 10-fold increases in total vitamin E tocochromanols, principally as tocotrienols, with little effect on seed oil or protein concentrations. Tocochromanols were primarily in δ- and γ-forms, which were shifted largely to α- and ß-tocochromanols with γ-TMT co-expression. We tested whether oxidative stability of conventional or PUFA-enhanced soybean oil could be improved by metabolic engineering for increased vitamin E antioxidants. Selected lines were crossed with a stearidonic acid (SDA, 18:4Δ6,9,12,15)-producing line, resulting in progeny with oil enriched in SDA and α- or γ-linoleic acid (ALA, 18:3Δ9,12,15 or GLA, 18:3Δ6,9,12), from transgene segregation. Oil extracted from HGGT-expressing lines had ≥6-fold increase in free radical scavenging activity compared to controls. However, the oxidative stability index of oil from vitamin E-enhanced lines was ~15% lower than that of oil from non-engineered seeds and nearly the same or modestly increased in oil from the GLA, ALA and SDA backgrounds relative to controls. These findings show that soybean is an effective platform for producing high levels of free-radical scavenging vitamin E antioxidants, but this trait may have negative effects on oxidative stability of conventional oil or only modest improvement of the oxidative stability of PUFA-enhanced oil.


Assuntos
Ácidos Graxos Insaturados , Regulação da Expressão Gênica de Plantas , Glycine max , Engenharia Metabólica , Sementes , Vitamina E , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/genética , Sementes/genética , Sementes/metabolismo , Óleo de Soja/biossíntese , Óleo de Soja/genética , Glycine max/genética , Glycine max/metabolismo , Vitamina E/biossíntese , Vitamina E/genética
5.
Plant Biotechnol J ; 17(4): 776-788, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30230695

RESUMO

Thlapsi arvense L. (pennycress) is being developed as a profitable oilseed cover crop for the winter fallow period throughout the temperate regions of the world, controlling soil erosion and nutrients run-off on otherwise barren farmland. We demonstrate that pennycress can serve as a user-friendly model system akin to Arabidopsis that is well-suited for both laboratory and field experimentation. We sequenced the diploid genome of the spring-type Spring 32-10 inbred line (1C DNA content of 539 Mb; 2n = 14), identifying variation that may explain phenotypic differences with winter-type pennycress, as well as predominantly a one-to-one correspondence with Arabidopsis genes, which makes translational research straightforward. We developed an Agrobacterium-mediated floral dip transformation method (0.5% transformation efficiency) and introduced CRISPR-Cas9 constructs to produce indel mutations in the putative FATTY ACID ELONGATION1 (FAE1) gene, thereby abolishing erucic acid production and creating an edible seed oil comparable to that of canola. We also stably transformed pennycress with the Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) gene, producing low-viscosity acetyl-triacylglycerol-containing seed oil suitable as a diesel-engine drop-in fuel. Adoption of pennycress as a model system will accelerate oilseed-crop translational research and facilitate pennycress' rapid domestication to meet the growing sustainable food and fuel demands.


Assuntos
Arabidopsis/genética , Diacilglicerol O-Aciltransferase/metabolismo , Euonymus/enzimologia , Genoma de Planta/genética , Óleos de Plantas/metabolismo , Thlaspi/genética , Produtos Agrícolas , Diacilglicerol O-Aciltransferase/genética , Ácidos Erúcicos/metabolismo , Euonymus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Thlaspi/metabolismo
6.
Sci Rep ; 6: 22181, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26916792

RESUMO

Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds.


Assuntos
Reatores Biológicos , Brassicaceae/metabolismo , Produtos Agrícolas/metabolismo , Engenharia Metabólica , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Ceras/metabolismo , Brassicaceae/genética , Produtos Agrícolas/genética , Plantas Geneticamente Modificadas/genética
7.
J Exp Bot ; 64(11): 3189-200, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23814277

RESUMO

Diacylglycerol acyltransferase (DGAT) catalyses the last step in acyl-CoA-dependent triacylglycerol (TAG) biosynthesis and is an important determinant of cellular oil content and quality. In this study, a gene, designated TaDGAT2, encoding a type 2 DGAT (DGAT2)-related enzyme was identified from the oleaginous marine protist Thraustochytrium aureum. The deduced TaDGAT2 sequence contains a ~460 amino acid domain most closely related to DGAT2s from Dictyostelium sp. (45-50% identity). Recombinant TaDGAT2 restored TAG biosynthesis to the Saccharomyces cerevisiae H1246 TAG-deficient mutant, and microsomes from the complemented mutant displayed DGAT activity with C16 and C18 saturated and unsaturated fatty acyl-CoA and diacylglycerol substrates. To examine its biotechnological potential, TaDGAT2 was expressed under control of a strong seed-specific promoter in wild-type Arabidopsis thaliana and the high linoleic acid fad3fae1 mutant. In both backgrounds, little change was detected in seed oil content, but a striking increase in oleic acid content of seeds was observed. This increase was greatest in fad3fae1 seeds, where relative amounts of oleic acid increased nearly 2-fold to >50% of total fatty acids. In addition, >2-fold increase in oleic acid levels was detected in the triacylglycerol sn-2 position and in the major seed phospholipid phosphatidylcholine. These results suggest that increased seed oleic acid content mediated by TaDGAT2 is influenced in part by the fatty acid composition of host cells and occurs not by enhancing oleic acid content at the TAG sn-3 position directly but by increasing total oleic acid levels in seeds, presumably by limiting flux through phosphatidylcholine-based desaturation reactions.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Ácido Oleico/metabolismo , Sementes/enzimologia , Sementes/metabolismo , Arabidopsis/genética , Diacilglicerol O-Aciltransferase/classificação , Diacilglicerol O-Aciltransferase/genética , Filogenia , Sementes/genética , Especificidade por Substrato
8.
Plant J ; 76(1): 138-50, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23808562

RESUMO

Engineering compositional changes in oilseeds is typically accomplished by introducing new enzymatic step(s) and/or by blocking or enhancing an existing enzymatic step(s) in a seed-specific manner. However, in practice, the amounts of lipid species that accumulate in seeds are often different from what one would predict from enzyme expression levels, and these incongruences may be rooted in an incomplete understanding of the regulation of seed lipid metabolism at the cellular/tissue level. Here we show by mass spectrometry imaging approaches that triacylglycerols and their phospholipid precursors are distributed differently within cotyledons and the hypocotyl/radicle axis in embryos of the oilseed crop Camelina sativa, indicating tissue-specific heterogeneity in triacylglycerol metabolism. Phosphatidylcholines and triacylglycerols enriched in linoleic acid (C18:2) were preferentially localized to the axis tissues, whereas lipid classes enriched in gadoleic acid (C20:1) were preferentially localized to the cotyledons. Manipulation of seed lipid compositions by heterologous over-expression of an acyl-acyl carrier protein thioesterase, or by suppression of fatty acid desaturases and elongases, resulted in new overall seed storage lipid compositions with altered patterns of distribution of phospholipid and triacylglycerol in transgenic embryos. Our results reveal previously unknown differences in acyl lipid distribution in Camelina embryos, and suggest that this spatial heterogeneity may or may not be able to be changed effectively in transgenic seeds depending upon the targeted enzyme(s)/pathway(s). Further, these studies point to the importance of resolving the location of metabolites in addition to their quantities within plant tissues.


Assuntos
Camellia/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/metabolismo , Camellia/genética , Camellia/ultraestrutura , Ácidos Graxos Dessaturases/análise , Ácidos Graxos/análise , Metabolismo dos Lipídeos , Lipídeos/análise , Fosfatidilcolinas , Fosfolipídeos , Plantas Geneticamente Modificadas , Sementes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tioléster Hidrolases/genética , Triglicerídeos
9.
Plant Biotechnol J ; 11(6): 759-69, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23551501

RESUMO

Camelina (Camelina sativa), a Brassicaceae oilseed, has received recent interest as a biofuel crop and production platform for industrial oils. Limiting wider production of camelina for these uses is the need to improve the quality and content of the seed protein-rich meal and oil, which is enriched in oxidatively unstable polyunsaturated fatty acids that are deleterious for biodiesel. To identify candidate genes for meal and oil quality improvement, a transcriptome reference was built from 2047 Sanger ESTs and more than 2 million 454-derived sequence reads, representing genes expressed in developing camelina seeds. The transcriptome of approximately 60K transcripts from 22 597 putative genes includes camelina homologues of nearly all known seed-expressed genes, suggesting a high level of completeness and usefulness of the reference. These sequences included candidates for 12S (cruciferins) and 2S (napins) seed storage proteins (SSPs) and nearly all known lipid genes, which have been compiled into an accessible database. To demonstrate the utility of the transcriptome for seed quality modification, seed-specific RNAi lines deficient in napins were generated by targeting 2S SSP genes, and high oleic acid oil lines were obtained by targeting FATTY ACID DESATURASE 2 (FAD2) and FATTY ACID ELONGASE 1 (FAE1). The high sequence identity between Arabidopsis thaliana and camelina genes was also exploited to engineer high oleic lines by RNAi with Arabidopsis FAD2 and FAE1 sequences. It is expected that these transcriptomic data will be useful for breeding and engineering of additional camelina seed traits and for translating findings from the model Arabidopsis to an oilseed crop.


Assuntos
Brassicaceae/genética , Óleos de Plantas/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/genética , Transcriptoma/genética , Pesquisa Translacional Biomédica , Acil Coenzima A/metabolismo , Arabidopsis/genética , Sequência de Bases , Ácidos Graxos/biossíntese , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Armazenamento de Sementes/genética , Sementes/crescimento & desenvolvimento
10.
PLoS One ; 6(8): e23731, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21886817

RESUMO

Protein superfamilies can exhibit considerable diversification of function among their members in various organisms. The DJ-1 superfamily is composed of proteins that are principally involved in stress response and are widely distributed in all kingdoms of life. The model flowering plant Arabidopsis thaliana contains three close homologs of animal DJ-1, all of which are tandem duplications of the DJ-1 domain. Consequently, the plant DJ-1 homologs are likely pseudo-dimeric proteins composed of a single polypeptide chain. We report that one A. thaliana DJ-1 homolog (AtDJ1C) is the first DJ-1 homolog in any organism that is required for viability. Homozygous disruption of the AtDJ1C gene results in non-viable, albino seedlings that can be complemented by expression of wild-type or epitope-tagged AtDJ1C. The plastids from these dj1c plants lack thylakoid membranes and granal stacks, indicating that AtDJ1C is required for proper chloroplast development. AtDJ1C is expressed early in leaf development when chloroplasts mature, but is downregulated in older tissue, consistent with a proposed role in plastid development. In addition to its plant-specific function, AtDJ1C is an atypical member of the DJ-1 superfamily that lacks a conserved cysteine residue that is required for the functions of most other superfamily members. The essential role for AtDJ1C in chloroplast maturation expands the known functional diversity of the DJ-1 superfamily and provides the first evidence of a role for specialized DJ-1-like proteins in eukaryotic development.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/citologia , Cloroplastos/metabolismo , Animais , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos , Genes de Plantas , Homologia de Sequência de Aminoácidos
11.
Biochemistry ; 47(12): 3645-53, 2008 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-18302343

RESUMO

Proteins with a conserved Cys- and His-rich SQUAMOSA promoter binding protein (SBP) domain are transcription factors restricted to photosynthetic organisms that possess a novel two Zn-finger structure DNA-binding domain. Despite the fact that altered expression of some SBP-encoding genes has profound effects on organism growth and development, little is known about SBP domain protein target genes. Misexpression of the Arabidopsis thaliana AtSPL14 SBP domain gene confers resistance to programmed cell death and modifies plant architecture. A consensus DNA-binding motif for AtSPL14 was identified by systematic evolution of ligands by exponential enrichment (SELEX) or random binding site selection (RBSS). DNA recognized by AtSPL14 contained the core binding motif (GTAC) found for other SBP domain proteins, but mutational analyses indicated that at least one additional flanking nucleotide is necessary for effective AtSPL14-DNA interaction. Comparison of several SBP domain amino acid sequences allows us to hypothesize which specific amino acids might participate in this sequence-specific DNA recognition. Electrophoretic mobility shift assays (EMSA) with mutant AtSPL14 DNA-binding domain proteins indicated that not all of the Zn (2+) ion coordinating ligands in the second Zn structure are strictly required for DNA binding. Surface plasmon resonance (SPR) was used to evaluate AtSPL14 in vitro binding kinetics for comparison of equilibrium binding constants with other SBP domain proteins. These data provide a strong basis for further experiments aimed at defining and distinguishing the sets of genes regulated by the closely related SBP domain family members.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Ligação a DNA/química , Sequência de Bases , Sítios de Ligação , Sequência Consenso , Ensaio de Desvio de Mobilidade Eletroforética , Cinética , Estrutura Terciária de Proteína , Técnica de Seleção de Aptâmeros , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...