Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroimaging ; 32(4): 617-628, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35384128

RESUMO

BACKGROUND AND PURPOSE: Biomechanical changes in the brain have not been fully elucidated in Alzheimer's disease (AD). We aimed to investigate the effect of ß-amyloid accumulation on mouse brain viscoelasticity. METHODS: Magnetic resonance elastography was used to calculate magnitude of the viscoelastic modulus (|G*|), elasticity (Gd ), and viscosity (Gl ) in the whole brain parenchyma (WB) and bilateral hippocampi of 9 transgenic J20 (AD) mice (5 males/4 females) and 10 wild-type (WT) C57BL/6 mice (5 males/5 females) at 11 and 14 months of age. RESULTS: Cross-sectional analyses showed no significant difference between AD and WT mice at either timepoints. No sex-specific differences were observed at 11 months of age, but AD females showed significantly higher hippocampal |G*| and Gl and WB |G*|, Gd , and Gl compared to both AD and WT males at 14 months of age. Similar trending differences were found between female AD and female WT animals but did not reach significance. Longitudinal analyses showed significant increases in hippocampal |G*|, Gd , and Gl , and significant decreases in WB |G*|, Gd , and Gl between 11 and 14 months in both AD and WT mice. Each subgroup showed significant increases in all hippocampal and significant decreases in all WB measures, with the exception of AD females, which showed no significant changes in WB |G*|, Gd , or Gl . CONCLUSION: Aging had region-specific effects on cerebral viscoelasticity, namely, WB softening and hippocampal stiffening. Amyloid plaque deposition may have sex-specific effects, which require further scrutiny.


Assuntos
Doença de Alzheimer , Técnicas de Imagem por Elasticidade , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Animais , Estudos Transversais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placa Amiloide/diagnóstico por imagem , Placa Amiloide/patologia
2.
Cancer Imaging ; 20(1): 35, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398076

RESUMO

BACKGROUND: Anti-angiogenic treatment of glioblastoma (GBM) complicates radiologic monitoring. We evaluated magnetic resonance elastography (MRE) as an imaging tool for monitoring the efficacy of anti-VEGF treatment of GBM. METHODS: Longitudinal studies were performed in an orthotopic GBM xenograft mouse model. Animals treated with B20 anti-VEGF antibody were compared to untreated controls regarding survival (n = 13), classical MRI-contrasts and biomechanics as quantified via MRE (n = 15). Imaging was performed on a 7 T small animal horizontal bore MRI scanner. MRI and MRE parameters were compared to histopathology. RESULTS: Anti-VEGF-treated animals survived longer than untreated controls (p = 0.0011) with progressively increased tumor volume in controls (p = 0.0001). MRE parameters viscoelasticity |G*| and phase angle Y significantly decreased in controls (p = 0.02 for |G*| and p = 0.0071 for Y). This indicates that untreated tumors became softer and more elastic than viscous with progression. Tumor volume in treated animals increased more slowly than in controls, indicating efficacy of the therapy, reaching significance only at the last time point (p = 0.02). Viscoelasticity and phase angle Y tended to decrease throughout therapy, similar as for control animals. However, in treated animals, the decrease in phase angle Y was significantly attenuated and reached statistical significance at the last time point (p = 0.04). Histopathologically, control tumors were larger and more heterogeneous than treated tumors. Vasculature was normalized in treated tumors compared with controls, which showed abnormal vasculature and necrosis. In treated tumors, a higher amount of myelin was observed within the tumor area (p = 0.03), likely due to increased tumor invasion. Stiffness of the contralateral hemisphere was influenced by tumor mass effect and edema. CONCLUSIONS: Anti-angiogenic GBM treatment prolonged animal survival, slowed tumor growth and softening, but did not prevent progression. MRE detected treatment effects on tumor stiffness; the decrease of viscoelasticity and phase angle in GBM was attenuated in treated animals, which might be explained by normalized vasculature and greater myelin preservation within treated tumors. Thus, further investigation of MRE is warranted to understand the potential for MRE in monitoring treatment in GBM patients by complementing existing MRI techniques.


Assuntos
Inibidores da Angiogênese/efeitos adversos , Neoplasias Encefálicas/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Glioblastoma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Inibidores da Angiogênese/uso terapêutico , Animais , Anticorpos/efeitos adversos , Anticorpos/imunologia , Anticorpos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Feminino , Glioblastoma/tratamento farmacológico , Camundongos , Camundongos Nus , Fator A de Crescimento do Endotélio Vascular/imunologia
3.
Sci Adv ; 5(4): eaav3816, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31001585

RESUMO

Mapping neuronal activity noninvasively is a key requirement for in vivo human neuroscience. Traditional functional magnetic resonance (MR) imaging, with a temporal response of seconds, cannot measure high-level cognitive processes evolving in tens of milliseconds. To advance neuroscience, imaging of fast neuronal processes is required. Here, we show in vivo imaging of fast neuronal processes at 100-ms time scales by quantifying brain biomechanics noninvasively with MR elastography. We show brain stiffness changes of ~10% in response to repetitive electric stimulation of a mouse hind paw over two orders of frequency from 0.1 to 10 Hz. We demonstrate in mice that regional patterns of stiffness modulation are synchronous with stimulus switching and evolve with frequency. For very fast stimuli (100 ms), mechanical changes are mainly located in the thalamus, the relay location for afferent cortical input. Our results demonstrate a new methodology for noninvasively tracking brain functional activity at high speed.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Estimulação Acústica , Animais , Estimulação Elétrica , Membro Anterior/fisiologia , Membro Posterior/fisiologia , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Tálamo/fisiologia
4.
NMR Biomed ; 31(10): e3840, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29193449

RESUMO

Glioblastoma (GBM) is the most common primary brain tumor. It is highly malignant and has a correspondingly poor prognosis. Diagnosis and monitoring are mainly accomplished with MRI, but remain challenging in some cases. Therefore, complementary methods for tumor detection and characterization would be beneficial. Using magnetic resonance elastography (MRE), we performed a longitudinal study of the biomechanical properties of intracranially implanted GBM in mice and compared the results to histopathology. The biomechanical parameters of viscoelastic modulus, shear wave speed and phase angle were significantly lower in tumors compared with healthy brain tissue and decreased over time with tumor progression. Moreover, some MRE parameters revealed sub-regions at later tumor stages, which were not easily detectable on anatomical MRI images. Comparison with histopathology showed that softer tumor regions contained necrosis and patches of viable tumor cells. In contrast, areas of densely packed tumor cells and blood vessels identified with histology coincided with higher values of viscoelastic modulus and shear wave speed. Interestingly, the phase angle was independent from these anatomical variations. In summary, MRE depicted longitudinal and morphological changes in GBM and may prove valuable for tumor characterization in patients.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Técnicas de Imagem por Elasticidade , Glioblastoma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Elasticidade , Glioblastoma/patologia , Camundongos Nus , Bainha de Mielina/metabolismo , Imagens de Fantasmas , Fatores de Tempo , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...