Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838211

RESUMO

AIMS: Although the cannabinoid CB1 receptor has been implicated in atherosclerosis, its cell-specific effects in this disease are not well understood. To address this, we generated a transgenic mouse model to study the role of myeloid CB1 signaling in atherosclerosis. METHODS AND RESULTS: Here, we report that male mice with myeloid-specific Cnr1 deficiency on atherogenic background developed smaller lesions and necrotic cores than controls, while only minor genotype differences were observed in females. Male Cnr1 deficient mice showed reduced arterial monocyte recruitment and macrophage proliferation with less inflammatory phenotype. The sex-specific differences in proliferation were dependent on estrogen receptor (ER)α-estradiol signaling. Kinase activity profiling identified a CB1-dependent regulation of p53 and cyclin-dependent kinases. Transcriptomic profiling further revealed chromatin modifications, mRNA processing and mitochondrial respiration among the key processes affected by CB1 signaling, which was supported by metabolic flux assays. Chronic administration of the peripherally-restricted CB1 antagonist JD5037 inhibited plaque progression and macrophage proliferation, but only in male mice. Finally, CNR1 expression was detectable in human carotid endarterectomy plaques and inversely correlated with proliferation, oxidative metabolism and inflammatory markers, suggesting a possible implication of CB1-dependent regulation in human pathophysiology. CONCLUSION: Impaired macrophage CB1 signaling is atheroprotective by limiting their arterial recruitment, proliferation and inflammatory reprogramming in male mice. The importance of macrophage CB1 signaling appears to be sex-dependent.

2.
JACC Basic Transl Sci ; 9(1): 100-116, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38362348

RESUMO

Endothelial cells play a critical role during venous thrombus remodeling, and unresolved, fibrotic thrombi with irregular vessels obstruct the pulmonary artery in patients with chronic thromboembolic pulmonary hypertension (CTEPH). This study sought to identify endothelial mediators of impaired venous thrombus resolution and to determine their role in the pathogenesis of the vascular obstructions in patients with CTEPH. Endothelial cells outgrown from pulmonary endarterectomy specimens (PEA) were processed for mRNA profiling, and nCounter gene expression and immunohistochemistry analysis of PEA tissue microarrays and immunoassays of plasma were used to validate the expression in CTEPH. Lentiviral overexpression in human pulmonary artery endothelial cells (HPAECs) and exogenous administration of the recombinant protein into C57BL/6J mice after inferior Vena cava ligation were employed to assess their role for venous thrombus resolution. RT2 PCR profiler analysis demonstrated the significant overexpression of factors downstream of transforming growth factor beta (TGFß), that is TGFß-Induced Protein (TGFBI or BIGH3) and transgelin (TAGLN), or involved in TGFß signaling, that is follistatin-like 3 (FSTL3) and stanniocalcin-2 (STC2). Gene expression and immunohistochemistry analysis of tissue microarrays localized potential disease candidates to vessel-rich regions. Lentiviral overexpression of TGFBI in HPAECs increased fibrotic remodeling of human blood clots in vitro, and exogenous administration of recombinant TGFBI in mice delayed venous thrombus resolution. Significantly elevated plasma TGFBI levels were observed in patients with CTEPH and decreased after PEA. Our findings suggest that overexpression of TGFBI in endothelial promotes venous thrombus non-resolution and fibrosis and is causally involved in the pathophysiology of CTEPH.

3.
Sci Transl Med ; 15(720): eadf3357, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37910599

RESUMO

The CXC chemokine receptor 4 (CXCR4) in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) is crucial for vascular integrity. The atheroprotective functions of CXCR4 in vascular cells may be counteracted by atherogenic functions in other nonvascular cell types. Thus, strategies for cell-specifically augmenting CXCR4 function in vascular cells are crucial if this receptor is to be useful as a therapeutic target in treating atherosclerosis and other vascular disorders. Here, we identified miR-206-3p as a vascular-specific CXCR4 repressor and exploited a target-site blocker (CXCR4-TSB) that disrupted the interaction of miR-206-3p with CXCR4 in vitro and in vivo. In vitro, CXCR4-TSB enhanced CXCR4 expression in human and murine ECs and VSMCs to modulate cell viability, proliferation, and migration. Systemic administration of CXCR4-TSB in Apoe-deficient mice enhanced Cxcr4 expression in ECs and VSMCs in the walls of blood vessels, reduced vascular permeability and monocyte adhesion to endothelium, and attenuated the development of diet-induced atherosclerosis. CXCR4-TSB also increased CXCR4 expression in B cells, corroborating its atheroprotective role in this cell type. Analyses of human atherosclerotic plaque specimens revealed a decrease in CXCR4 and an increase in miR-206-3p expression in advanced compared with early lesions, supporting a role for the miR-206-3p-CXCR4 interaction in human disease. Disrupting the miR-206-3p-CXCR4 interaction in a cell-specific manner with target-site blockers is a potential therapeutic approach that could be used to treat atherosclerosis and other vascular diseases.


Assuntos
Aterosclerose , MicroRNAs , Placa Aterosclerótica , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais/metabolismo , Receptores CXCR4/metabolismo , Aterosclerose/genética , Placa Aterosclerótica/patologia , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , Movimento Celular
4.
Arterioscler Thromb Vasc Biol ; 42(8): 1023-1036, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35708027

RESUMO

BACKGROUND: Maladapted endothelial cells (ECs) secrete ENPP2 (ectonucleotide pyrophosphatase/phosphodiesterase 2; autotaxin)-a lysophospholipase D that generates lysophosphatidic acids (LPAs). ENPP2 derived from the arterial wall promotes atherogenic monocyte adhesion induced by generating LPAs, such as arachidonoyl-LPA (LPA20:4), from oxidized lipoproteins. Here, we aimed to determine the role of endothelial ENPP2 in the production of LPAs and atherosclerosis. METHODS: We quantified atherosclerosis in mice harboring loxP-flanked Enpp2 alleles crossed with Apoe-/- mice expressing tamoxifen-inducible Cre recombinase under the control of the EC-specific bone marrow X kinase promoter after 12 weeks of high-fat diet feeding. RESULTS: A tamoxifen-induced EC-specific Enpp2 knockout decreased atherosclerosis, accumulation of lesional macrophages, monocyte adhesion, and expression of endothelial CXCL (C-X-C motif chemokine ligand) 1 in male and female Apoe-/- mice. In vitro, ENPP2 mediated the mildly oxidized LDL (low-density lipoprotein)-induced expression of CXCL1 in aortic ECs by generating LPA20:4, palmitoyl-LPA (LPA16:0), and oleoyl-LPA (LPA18:1). ENPP2 and its activity were detected on the endothelial surface by confocal imaging. The expression of endothelial Enpp2 established a strong correlation between the plasma levels of LPA16:0, stearoyl-LPA (LPA18:0), and LPA18:1 and plaque size and a strong negative correlation between the LPA levels and ENPP2 activity in the plasma. Moreover, endothelial Enpp2 knockout increased the weight of high-fat diet-fed male Apoe-/- mice. CONCLUSIONS: We demonstrated that the expression of ENPP2 in ECs promotes atherosclerosis and endothelial inflammation in a sex-independent manner. This might be due to the generation of LPA20:4, LPA16:0, and LPA18:1 from mildly oxidized lipoproteins on the endothelial surface.


Assuntos
Aterosclerose , Células Endoteliais , Diester Fosfórico Hidrolases , Animais , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Feminino , Lisofosfolipídeos , Masculino , Camundongos , Camundongos Knockout para ApoE , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Tamoxifeno
5.
Handb Exp Pharmacol ; 270: 463-492, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33454857

RESUMO

Regulatory RNAs like microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) control vascular and immune cells' phenotype and thus play a crucial role in atherosclerosis. Moreover, the mutual interactions between miRNAs and lncRNAs link both types of regulatory RNAs in a functional network that affects lesion formation. In this review, we deduce novel concepts of atherosclerosis from the analysis of the current data on regulatory RNAs' role in endothelial cells (ECs) and macrophages. In contrast to arterial ECs, which adopt a stable phenotype by adaptation to high shear stress, macrophages are highly plastic and quickly change their activation status. At predilection sites of atherosclerosis, such as arterial bifurcations, ECs are exposed to disturbed laminar flow, which generates a dysadaptive stress response mediated by miRNAs. Whereas the highly abundant miR-126-5p promotes regenerative proliferation of dysadapted ECs, miR-103-3p stimulates inflammatory activation and impairs endothelial regeneration by aberrant proliferation and micronuclei formation. In macrophages, miRNAs are essential in regulating energy and lipid metabolism, which affects inflammatory activation and foam cell formation.Moreover, lipopolysaccharide-induced miR-155 and miR-146 shape inflammatory macrophage activation through their oppositional effects on NF-kB. Most lncRNAs are not conserved between species, except a small group of very long lncRNAs, such as MALAT1, which blocks numerous miRNAs by providing non-functional binding sites. In summary, regulatory RNAs' roles are highly context-dependent, and therapeutic approaches that target specific functional interactions of miRNAs appear promising against cardiovascular diseases.


Assuntos
Aterosclerose , MicroRNAs , RNA Longo não Codificante , Aterosclerose/genética , Células Endoteliais , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética
6.
Circulation ; 144(13): 1059-1073, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34233454

RESUMO

BACKGROUND: The necrotic core partly formed by ineffective efferocytosis increases the risk of an atherosclerotic plaque rupture. Microribonucleic acids contribute to necrotic core formation by regulating efferocytosis and macrophage apoptosis. Atherosclerotic plaque rupture occurs at increased frequency in the early morning, indicating diurnal changes in plaque vulnerability. Although circadian rhythms play a role in atherosclerosis, the molecular clock output pathways that control plaque composition and rupture susceptibility are unclear. METHODS: Circadian gene expression, necrotic core size, apoptosis, and efferocytosis in aortic lesions were investigated at different times of the day in Apoe-/-Mir21+/+ mice and Apoe-/-Mir21-/- mice after consumption of a high-fat diet for 12 weeks. Genome-wide gene expression and lesion formation were analyzed in bone marrow-transplanted mice. Diurnal changes in apoptosis and clock gene expression were determined in human atherosclerotic lesions. RESULTS: The expression of molecular clock genes, lesional apoptosis, and necrotic core size were diurnally regulated in Apoe-/- mice. Efferocytosis did not match the diurnal increase in apoptosis at the beginning of the active phase. However, in parallel with apoptosis, expression levels of oscillating Mir21 strands decreased in the mouse atherosclerotic aorta. Mir21 knockout abolished circadian regulation of apoptosis and reduced necrotic core size but did not affect core clock gene expression. Further, Mir21 knockout upregulated expression of proapoptotic Xaf1 (XIAP-associated factor 1) in the atherosclerotic aorta, which abolished circadian expression of Xaf1. The antiapoptotic effect of Mir21 was mediated by noncanonical targeting of Xaf1 through both Mir21 strands. Mir21 knockout in bone marrow cells also reduced atherosclerosis and necrotic core size. Circadian regulation of clock gene expression was confirmed in human atherosclerotic lesions. Apoptosis oscillated diurnally in phase with XAF1 expression, demonstrating an early morning peak antiphase to that of the Mir21 strands. CONCLUSIONS: Our findings suggest that the molecular clock in atherosclerotic lesions induces a diurnal rhythm of apoptosis regulated by circadian Mir21 expression in macrophages that is not matched by efferocytosis, thus increasing the size of the necrotic core.


Assuntos
Aterosclerose/metabolismo , MicroRNAs/metabolismo , Animais , Apoptose/fisiologia , Aterosclerose/genética , Aterosclerose/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL
7.
Int J Cardiol ; 273: 199-202, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30213595

RESUMO

BACKGROUND: The recovery of endothelial cells (ECs) after vascular injury is mainly mediated by the proliferation of resident ECs, thereby reducing neointima formation. The RNase Dicer processes microRNAs (miRNAs) and regulates EC function by controlling miRNA-mediated regulation of gene expression. This study aimed to investigate the impact of miRNA biogenesis in ECs on endothelial repair during lesion formation after vascular injury. METHODS AND RESULTS: To study the effect of Dicer on ECs during neointima formation, conditional deletion of Dicer was induced in Apoe-/- mice (EC-Dicerflox) by tamoxifen injection. Following wire-induced injury to carotid arteries of EC-Dicerflox mice, the EC recovery was impaired and the neointima formation and lesional macrophage accumulation was increased. Moreover, conditional deletion of Dicer in ECs diminished the expression of miR-126-5p in EC-Dicerflox mice. Notably, reconstitution of miR-126-5p in the injured arteries of EC-Dicerflox mice using miR-126-5p mimic, prevented the impaired endothelial recovery and increased lesion formation observed in EC-Dicerflox mice. CONCLUSIONS: Deficiency of endothelial Dicer diminished endothelial recovery and promoted neointima formation probably due to impaired miR-126-5p expression. Treatment with miR-126-5p mimics promotes endothelial recovery and thereby limits neointima formation. Thus, miR-126-5p therapy represents a potential approach to improve endothelial recovery and prevent restenosis following vascular injury.


Assuntos
Lesões das Artérias Carótidas/metabolismo , RNA Helicases DEAD-box/deficiência , Endotélio Vascular/metabolismo , MicroRNAs/biossíntese , Neointima/metabolismo , Ribonuclease III/deficiência , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Lesões das Artérias Carótidas/genética , Lesões das Artérias Carótidas/patologia , RNA Helicases DEAD-box/genética , Endotélio Vascular/lesões , Endotélio Vascular/patologia , Camundongos , Camundongos Knockout , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Neointima/genética , Neointima/patologia , Ribonuclease III/genética
9.
Circ Res ; 121(4): 354-367, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28637783

RESUMO

RATIONALE: Inflammation is a key contributor to atherosclerosis. MicroRNA-146a (miR-146a) has been identified as a critical brake on proinflammatory nuclear factor κ light chain enhancer of activated B cells signaling in several cell types, including endothelial cells and bone marrow (BM)-derived cells. Importantly, miR-146a expression is elevated in human atherosclerotic plaques, and polymorphisms in the miR-146a precursor have been associated with risk of coronary artery disease. OBJECTIVE: To define the role of endogenous miR-146a during atherogenesis. METHODS AND RESULTS: Paradoxically, Ldlr-/- (low-density lipoprotein receptor null) mice deficient in miR-146a develop less atherosclerosis, despite having highly elevated levels of circulating proinflammatory cytokines. In contrast, cytokine levels are normalized in Ldlr-/-;miR-146a-/- mice receiving wild-type BM transplantation, and these mice have enhanced endothelial cell activation and elevated atherosclerotic plaque burden compared with Ldlr-/- mice receiving wild-type BM, demonstrating the atheroprotective role of miR-146a in the endothelium. We find that deficiency of miR-146a in BM-derived cells precipitates defects in hematopoietic stem cell function, contributing to extramedullary hematopoiesis, splenomegaly, BM failure, and decreased levels of circulating proatherogenic cells in mice fed an atherogenic diet. These hematopoietic phenotypes seem to be driven by unrestrained inflammatory signaling that leads to the expansion and eventual exhaustion of hematopoietic cells, and this occurs in the face of lower levels of circulating low-density lipoprotein cholesterol in mice lacking miR-146a in BM-derived cells. Furthermore, we identify sortilin-1(Sort1), a known regulator of circulating low-density lipoprotein levels in humans, as a novel target of miR-146a. CONCLUSIONS: Our study reveals that miR-146a regulates cholesterol metabolism and tempers chronic inflammatory responses to atherogenic diet by restraining proinflammatory signaling in endothelial cells and BM-derived cells.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , MicroRNAs/metabolismo , Animais , Aterosclerose/patologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Bovinos , VLDL-Colesterol/metabolismo , Dieta Aterogênica/efeitos adversos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Receptores de LDL/metabolismo
10.
Cell Mol Life Sci ; 74(2): 359-372, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27622243

RESUMO

MicroRNAs (miRNAs) coordinate vascular repair by regulating injury-induced gene expression in vascular smooth muscle cells (SMCs) and promote the transition of SMCs from a contractile to a proliferating phenotype. However, the effect of miRNA expression in SMCs on neointima formation is unclear. Therefore, we studied the role of miRNA biogenesis by Dicer in SMCs in vascular repair. Following wire-induced injury to carotid arteries of Apolipoprotein E knockout (Apoe -/-) mice, miRNA microarray analysis revealed that the most significantly regulated miRNAs, such as miR-222 and miR-21-3p, were upregulated. Conditional deletion of Dicer in SMCs increased neointima formation by reducing SMC proliferation in Apoe -/- mice, and decreased mainly the expression of miRNAs, such as miR-147 and miR-100, which were not upregulated following vascular injury. SMC-specific deletion of Dicer promoted growth factor and inflammatory signaling and regulated a miRNA-target interaction network in injured arteries that was enriched in anti-proliferative miRNAs. The most connected miRNA in this network was miR-27a-3p [e.g., with Rho guanine nucleotide exchange factor 26 (ARHGEF26)], which was expressed in medial and neointimal SMCs in a Dicer-dependent manner. In vitro, miR-27a-3p suppresses ARHGEF26 expression and inhibits SMC proliferation by interacting with a conserved binding site in the 3' untranslated region of ARHGEF26 mRNA. We propose that Dicer expression in SMCs plays an essential role in vascular repair by generating anti-proliferative miRNAs, such as miR-27a-3p, to prevent vessel stenosis due to exaggerated neointima formation.


Assuntos
Redes Reguladoras de Genes , MicroRNAs/genética , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Neointima/genética , Ribonuclease III/metabolismo , Cicatrização/genética , Animais , Artérias/metabolismo , Artérias/patologia , Proliferação de Células , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , MicroRNAs/metabolismo , Miócitos de Músculo Liso/patologia , Neointima/metabolismo , Especificidade de Órgãos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo
12.
Nat Commun ; 7: 10521, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26837267

RESUMO

MicroRNAs regulate the maladaptation of endothelial cells (ECs) to naturally occurring disturbed blood flow at arterial bifurcations resulting in arterial inflammation and atherosclerosis in response to hyperlipidemic stress. Here, we show that reduced endothelial expression of the RNAse Dicer, which generates almost all mature miRNAs, decreases monocyte adhesion, endothelial C-X-C motif chemokine 1 (CXCL1) expression, atherosclerosis and the lesional macrophage content in apolipoprotein E knockout mice (Apoe(-/-)) after exposure to a high-fat diet. Endothelial Dicer deficiency reduces the expression of unstable miRNAs, such as miR-103, and promotes Krüppel-like factor 4 (KLF4)-dependent gene expression in murine atherosclerotic arteries. MiR-103 mediated suppression of KLF4 increases monocyte adhesion to ECs by enhancing nuclear factor-κB-dependent CXCL1 expression. Inhibiting the interaction between miR-103 and KLF4 reduces atherosclerosis, lesional macrophage accumulation and endothelial CXCL1 expression. Overall, our study suggests that Dicer promotes endothelial maladaptation and atherosclerosis in part by miR-103-mediated suppression of KLF4.


Assuntos
Aorta/metabolismo , Aterosclerose/genética , Artérias Carótidas/metabolismo , RNA Helicases DEAD-box/genética , Células Endoteliais/metabolismo , Fatores de Transcrição Kruppel-Like/genética , MicroRNAs/genética , Ribonuclease III/genética , Vasculite/genética , Animais , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Western Blotting , Adesão Celular/genética , Células Cultivadas , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , RNA Helicases DEAD-box/metabolismo , Dieta Hiperlipídica , Endarterectomia das Carótidas , Ensaio de Imunoadsorção Enzimática , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Imuno-Histoquímica , Imunoprecipitação , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Macrófagos , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Monócitos/metabolismo , NF-kappa B , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonuclease III/metabolismo , Transcriptoma , Vasculite/metabolismo
14.
Nat Rev Cardiol ; 12(6): 361-74, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25855604

RESUMO

Atherosclerosis is characterised by the accumulation of lipid-laden macrophages in atherosclerotic lesions and occurs preferentially at arterial branching points, which are prone to inflammation during hyperlipidaemic stress. The increased susceptibility at branching sites of arteries is attributable to poor adaptation of arterial endothelial cells to disturbed blood flow. In the past 5 years, several studies have provided mechanistic insights into the regulatory roles of microRNAs (miRNAs) in inflammatory activation, proliferation, and regeneration of endothelial cells during this maladaptive process. The intercellular transfer of vesicle-bound miRNAs contributes to arterial homeostasis, and the combinatorial effect of multiple miRNAs controls the unresolved inflammation orchestrated by macrophages in atherosclerotic lesions. In this Review, we highlight the miRNA-dependent regulation of the endothelial phenotype and the proliferative reserve that occurs in response to altered haemodynamic conditions as a prerequisite for atherogenic inflammation. In particular, we discuss the regulation of transcriptional modules by miRNAs and the protective role of complementary strand pairs, which encompasses remote miRNA signalling. In addition, we review the roles of miRNA tandems and describe the relevance of RNA target selection and competition to the behaviour of lesional macrophages. Elucidating miRNA-mediated regulatory mechanisms can aid the development of novel diagnostic and therapeutic strategies for atherosclerosis.


Assuntos
Aterosclerose/genética , MicroRNAs/genética , Aterosclerose/etiologia , Aterosclerose/fisiopatologia , Endotélio Vascular/fisiopatologia , Regulação da Expressão Gênica/fisiologia , Hemodinâmica/fisiologia , Hemorreologia/fisiologia , Humanos , Hiperlipidemias/complicações , Hiperlipidemias/fisiopatologia , Macrófagos/fisiologia , Mecanotransdução Celular/fisiologia
15.
Blood ; 125(20): 3202-12, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25838349

RESUMO

The blood contains high concentrations of circulating extracellular vesicles (EVs), and their levels and contents are altered in several disease states, including cardiovascular disease. However, the function of circulating EVs, especially the microRNAs (miRNAs) that they contain, are poorly understood. We sought to determine the effect of secreted vesicles produced by quiescent endothelial cells (ECs) on monocyte inflammatory responses and to assess whether transfer of microRNAs occurs between these cells. We observed that monocytic cells cocultured (but not in contact) with ECs were refractory to inflammatory activation. Further characterization revealed that endothelium-derived EVs (EC-EVs) suppressed monocyte activation by enhancing immunomodulatory responses and diminishing proinflammatory responses. EVs isolated from mouse plasma also suppressed monocyte activation. Importantly, injection of EC-EVs in vivo repressed monocyte/macrophage activation, confirming our in vitro findings. We found that several antiinflammatory microRNAs were elevated in EC-EV-treated monocytes. In particular, miR-10a was transferred to monocytic cells from EC-EVs and could repress inflammatory signaling through the targeting of several components of the NF-κB pathway, including IRAK4. Our findings reveal that ECs secrete EVs that can modulate monocyte activation and suggest that altered EV secretion and/or microRNA content may affect vascular inflammation in the setting of cardiovascular disease.


Assuntos
Células Endoteliais/metabolismo , MicroRNAs/genética , Monócitos/imunologia , Monócitos/metabolismo , Vesículas Secretórias/metabolismo , Comunicação Celular , Linhagem Celular , Técnicas de Cocultura , Espaço Extracelular , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Fatores Reguladores de Interferon/metabolismo , Lipopolissacarídeos/imunologia , NF-kappa B/metabolismo , Transdução de Sinais
16.
J Mol Cell Cardiol ; 89(Pt A): 35-41, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25450610

RESUMO

During the past decade, the crucial role of microRNAs (miRs) controlling tissue homeostasis and disease in the cardiovascular system has become widely recognized. By controlling the expression levels of their targets, several miRs have been shown to modulate the function of endothelial cells, vascular smooth muscle cells, and macrophages, thereby regulating the development and progression of atherosclerosis. For instance, miR-155 can exacerbate early stages of atherosclerosis by increasing the inflammatory activation and disturbing efficient lipid handling in macrophages. Conversely, miRs can exert atheroprotective roles, as has been established for the complementary miR-126 strand pair, which forms a dual system sustaining the endothelial proliferative reserve and promoting endothelial regeneration to counteract atherogenic effects of disturbed flow and hyperlipidemia. Under some conditions, miRs are released from cells and are transported by microvesicles, ribonucleoprotein complexes, and lipoproteins, being remarkably stable in circulation. Conferred by such delivery modules, miRs can regulate target mRNAs in recipient cells, representing a new tool for cell-cell communication in the context of atherosclerotic disease. Here, we will discuss novel aspects of miR-mediated regulatory mechanisms, namely the regulation by competing RNA targets, miRNA tandems, or complementary miR strand pairs, as well as their potential diagnostic and therapeutic value in atherosclerosis. This article is part of a Special Issue entitled 'Non-coding RNAs'.


Assuntos
Aterosclerose/genética , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Animais , Humanos , Inflamação/patologia , Ativação de Macrófagos/genética , MicroRNAs/genética , Modelos Biológicos
17.
Nat Med ; 20(4): 368-76, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24584117

RESUMO

Atherosclerosis, a hyperlipidemia-induced chronic inflammatory process of the arterial wall, develops preferentially at sites where disturbed laminar flow compromises endothelial cell (EC) function. Here we show that endothelial miR-126-5p maintains a proliferative reserve in ECs through suppression of the Notch1 inhibitor delta-like 1 homolog (Dlk1) and thereby prevents atherosclerotic lesion formation. Endothelial recovery after denudation was impaired in Mir126(-/-) mice because lack of miR-126-5p, but not miR-126-3p, reduced EC proliferation by derepressing Dlk1. At nonpredilection sites, high miR-126-5p levels in endothelial cells confer a proliferative reserve that compensates for the antiproliferative effects of hyperlipidemia, such that atherosclerosis was exacerbated in Mir126(-/-) mice. In contrast, downregulation of miR-126-5p by disturbed flow abrogated EC proliferation at predilection sites in response to hyperlipidemic stress through upregulation of Dlk1 expression. Administration of miR-126-5p rescued EC proliferation at predilection sites and limited atherosclerosis, introducing a potential therapeutic approach.


Assuntos
Aterosclerose/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , MicroRNAs/genética , Animais , Apolipoproteínas E/genética , Proteínas de Ligação ao Cálcio , Lesões das Artérias Carótidas/metabolismo , Proliferação de Células , Regulação para Baixo , Células Endoteliais , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Camundongos , Camundongos Knockout , MicroRNAs/fisiologia
18.
Cardiovasc Res ; 99(2): 294-303, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23612583

RESUMO

Changes in haemodynamic forces in the vascular system result in an altered expression of miRs, which play important gene-regulatory roles by pairing to the mRNAs of protein-coding genes to fine-tune post-transcriptional repression. The development and structure of blood vessels are highly adapted to haemodynamic forces, such as shear stress, cyclic stretch, and circumferential wall stress, generated by the conductance of blood. Thus, fluctuations in shear stress contribute to miR-regulated differential gene expression in endothelial cells (ECs), which is essential for maintenance of vascular physiology. Several microRNAs have been identified that are induced by high shear stress mediating an atheroprotective role, such as miR-10a, miR-19a, miR-23b, miR-101, and miR-143/145. While changes in the expression profile of miR-21 and miR-92a by high shear stress are associated with an atheroprotective function, low shear stress-induced expression of miR-21, miR-92a, and miR-663 results in a pathological EC phenotype. MiR-155 fulfils pleiotropic functions in different regions of vasculature, when exposed to different modes of shear stress. Thus, changes in shear stress result in differential expression of numerous miRs, triggering the balance between susceptibility and resistance to cardiovascular diseases. Further elucidating the regulation of miRs by flow may allow future clinical applications of miRs as diagnostic and therapeutic tools.


Assuntos
Aterosclerose/metabolismo , Vasos Sanguíneos/metabolismo , Hemodinâmica , Mecanotransdução Celular , MicroRNAs/metabolismo , Animais , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Fenômenos Biomecânicos , Vasos Sanguíneos/patologia , Vasos Sanguíneos/fisiopatologia , Regulação da Expressão Gênica , Genótipo , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/fisiopatologia , Fenótipo , Fluxo Sanguíneo Regional , Estresse Mecânico
19.
Circulation ; 127(15): 1609-19, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23513069

RESUMO

BACKGROUND: Atherosclerosis is a chronic inflammatory vascular disease driven by the subendothelial accumulation of macrophages. The mechanism regulating the inflammatory response in macrophages during atherogenesis remains unclear. Because microRNAs (miRNAs) play a crucial role in cellular signaling by posttranscriptional regulation of gene expression, we studied the miRNA expression profiles during the progression of atherosclerosis. METHODS AND RESULTS: Using an miRNA real-time polymerase chain reaction array, we found that macrophage-derived miR-342-5p and miR-155 are selectively upregulated in early atherosclerotic lesions in Apoe(-/-) mice. miR-342-5p directly targets Akt1 through its 3'-untranslated region. Akt1 suppression by miR-342-5p induces proinflammatory mediators such as Nos2 and II6 in macrophages via the upregulation of miR-155. The local application of an miR-342-5p antagomir inhibits the development of atherosclerosis in partially ligated carotid arteries. In atherosclerotic lesions, the miR-342-5p antagomir upregulated Akt1 expression and suppressed the expression of miR-155 and Nos2. This reduced Nos2 expression was associated with a diminished generation of nitrotyrosine in the plaques. Furthermore, systemic treatment with an inhibitor of miR-342-5p reduced the progression of atherosclerosis in the aorta of Apoe(-/-) mice. CONCLUSIONS: Macrophage-derived miR-342-5p promotes atherosclerosis and enhances the inflammatory stimulation of macrophages by suppressing the Akt1-mediated inhibition of miR-155 expression. Therefore, targeting miR-342-5p may offer a promising strategy to treat atherosclerotic vascular disease.


Assuntos
Aterosclerose/patologia , Regulação da Expressão Gênica , Ativação de Macrófagos , MicroRNAs/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Vasculite/patologia , Animais , Doenças da Aorta/genética , Doenças da Aorta/patologia , Doenças da Aorta/fisiopatologia , Apolipoproteínas E/deficiência , Aterosclerose/genética , Aterosclerose/fisiopatologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/biossíntese , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Estenose das Carótidas/genética , Estenose das Carótidas/patologia , Estenose das Carótidas/fisiopatologia , Estenose das Carótidas/prevenção & controle , Quimiocina CCL2/biossíntese , Quimiocina CCL2/genética , RNA Helicases DEAD-box/deficiência , RNA Helicases DEAD-box/genética , Progressão da Doença , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-6/biossíntese , Interleucina-6/genética , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , MicroRNAs/antagonistas & inibidores , MicroRNAs/biossíntese , MicroRNAs/genética , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Oligonucleotídeos/farmacologia , Oligonucleotídeos/uso terapêutico , RNA Antissenso/farmacologia , RNA Antissenso/uso terapêutico , Ribonuclease III/deficiência , Ribonuclease III/genética , Transdução de Sinais/fisiologia , Tirosina/análogos & derivados , Tirosina/metabolismo , Regulação para Cima , Vasculite/genética , Vasculite/fisiopatologia
20.
Arterioscler Thromb Vasc Biol ; 33(3): 449-54, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23324496

RESUMO

Atherosclerosis is a condition caused by lipid-induced inflammation of the vessel wall orchestrated by a complex interplay of various cell types, such as endothelial cells, smooth muscle cells, and macrophages. MicroRNAs (miRNAs) have emerged as key regulators of gene expression typically by repressing the target mRNA, which determines cell fate and function under homeostatic and disease conditions. Here, we outline the effects of miRNA-145, -126, and -155 in atherosclerosis in vivo. Downregulation of miR-145, which controls differentiation of smooth muscle cells, promotes lesion formation, whereas the endothelial cell-specific miRNA-126 signals the need for endothelial repair through its transfer from apoptotic endothelial cells in microvesicles. Elevated miR-155 levels are characteristic of proinflammatory macrophages and atherosclerotic lesions. However, the effects of miR-155 seem to be different in early and advanced atherosclerosis. The discovery of the role of these miRNAs in atherosclerosis sheds light on the current concepts of atherogenesis and may provide novel treatment options for cardiovascular diseases.


Assuntos
Aterosclerose/metabolismo , Células Endoteliais/metabolismo , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Apoptose , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/terapia , Diferenciação Celular , Proliferação de Células , Modelos Animais de Doenças , Células Endoteliais/patologia , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...