Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 38(1): e23564, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37867446

RESUMO

Doxorubicin (DOX) is a widely used antineoplastic drug, but its clinical use is limited by significant toxicities, such as hepatotoxicity. In this study, we evaluated the effects of ß-lapachone (ß-LAP), a natural quinone-containing compound, in a mouse model of DOX-induced hepatotoxicity. ß-LAP was orally administered at 1.25, 2.5, and 5 mg/kg for 4 days, and a single dose of DOX (20 mg/kg) was injected intraperitoneally on the second day. Histopathological changes, liver function markers, antioxidant and inflammatory markers were assessed. ß-LAP ameliorated liver injury and liver function markers evoked by DOX. ß-LAP also downregulated the mRNA expression of nuclear factor-kB-corresponding genes including interleukin-6, interleukin-1ß, and tumor necrosis factor-α. Moreover, ß-LAP increased the nuclear factor erythroid 2-related factor 2 target genes heme oxygenase-1 and NAD(P)H: quinone oxidoreductase 1, along with antioxidant enzymes including reduced glutathione, catalase, and superoxide dismutase with simultaneous reduction in the lipid peroxidation product malondialdehyde. Meanwhile, it recovered NAD+ /NADH ratios and subsequently elevated the protein levels of sirtuin-1 (SIRT-1), farnesoid X receptor (FXR), and phosphorylated AMP-activated protein kinase (p-AMPK). Collectively, these findings suggest a protective role of ß-LAP against DOX-induced hepatotoxicity by partly regulating the NAD+ /SIRT-1/FXR/p-AMPK axis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Naftoquinonas , Camundongos , Animais , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NAD/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Estresse Oxidativo , Doxorrubicina/toxicidade , Naftoquinonas/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
2.
J Mol Histol ; 53(4): 691-698, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35704228

RESUMO

Renal fibrosis is characterized by accumulation of extracellular matrix components and collagen deposition. TGF-ß1 acts as a master switch promoting renal fibrosis through Smad dependent and/or Smad independent pathways. Thirty-five male C57BL/6 mice were divided into five groups of seven each; sham, unilateral ureteral obstruction (UUO), UUO+galunisertib (150 and 300 mg/kg/day), galunisertib (300 mg/kg/day). The UUO markedly induced renal fibrosis and injury as indicated by renal functional loss, increased levels of collagen Iα1, fibronectin and α-SMA; it also activated both the Smad 2/3 and MAPKs pathways as indicated by increased levels of TGF-ß1, p-Smad 2, p-Smad 3, p-p38, p-JNK and p-ERK. These UUO-induced changes were markedly attenuated by oral administration of galunisertib, the TGFßRI small molecule inhibitor. In conclusion, we demonstrated that TGF-ß1 receptor blockade can prevent UUO-induced renal fibrosis through indirect modulation of Smad and MAPKs signaling pathways and may be useful as a therapeutic agent in treatment and/or prevention of renal fibrosis.


Assuntos
Nefropatias , Obstrução Ureteral , Animais , Fibrose , Rim/patologia , Nefropatias/tratamento farmacológico , Nefropatias/etiologia , Nefropatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo
3.
Cell Biochem Funct ; 40(4): 359-368, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35445405

RESUMO

Porcupine (Porcn) enzyme plays an essential role in Wnt signaling activation. Stearoyl-CoA desaturase-1 (SCD1) is required to provide Porcn substrates. The aim of this study was to determine the effect of a novel Porcn inhibitor on the fate of human embryonic stem cells (hESCs) and the reliance of Porcn on SCD1 activity. hESCs were cultured on a feeder layer or Matrigel-coated plates. Small molecules WNT974 (LGK-974) and CAY10566 were used to inhibit Porcn and SCD1 activity, respectively. We assessed the effect of Porcn inhibition on viability, expression of Wnt signaling targets, pluripotency markers, proliferation, differentiation, and protein fatty acylation. hESCs' conditioned medium (CM) containing secreted Wnt proteins were applied in rescue experiments. To examine the catalytic dependency of Porcn on SCD1, the results of combined inhibitor treatment were compared with the SCD1 inhibitor alone. LGK-974 at the selected concentrations showed mild effects on hESCs viability, but significantly reduced messenger RNA and protein expression of Wnt signaling targets (Axin-2 and c-Myc) and pluripotency markers (OCT-4 and SOX-2) (p < .05). Adding 1 µM of Porcn inhibitor reduced proliferation (p = .03) and enhanced differentiation capacity into ectodermal progenitors (p = .02), which were reverted by CM. Click chemistry reaction did not show significant alteration in protein fatty acylation upon LGK-974 treatment. Moreover, combined inhibitor treatment caused no further substantial reduction in Wnt signaling targets, pluripotency markers, and protein fatty acylation relative to CAY10566-treated cultures. The substrate availability for Porcn activity is regulated by SCD1 and targeting Porcn by LGK-974 prompts the transition of hESCs from self-renewal state to ectodermal lineage.


Assuntos
Células-Tronco Embrionárias Humanas , Via de Sinalização Wnt , Aciltransferases/antagonistas & inibidores , Aciltransferases/metabolismo , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Pirazinas/farmacologia , Piridinas/farmacologia , Estearoil-CoA Dessaturase
4.
Mol Biol Rep ; 47(11): 8881-8890, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33130988

RESUMO

Mouse embryonic fibroblasts (MEFs) accessibility coupled with their simple generation make them as a typical embryonic cell model and feeder layer for in vitro expansion of pluripotent stem cells (PSCs). In this study, a mechanical isolation technique was adopted to isolate MEFs and the efficiency of this technique was compared with enzymatic digestion method. The suspended MEFs were prepared either by mechanical method or 0.25% trypsin enzymatic digestion. The effect of tissue processing on cell apoptosis/necrosis, morphology, viable cell yield, population doubling time, surface marker expression, and the capacity to support PSCs were determined. The mechanical method yielded a significantly higher number of viable cells. However, it showed similar morphology and proliferation characteristics as compared to enzymatic digestion. The mechanical method induced slight apoptosis in MEFs; however, it did not exert the necrotic effect of trypsinization. Treatment of tissue slurry with trypsin solution caused cell lysis and subsequently cell clump formation. Mechanically isolated cells exhibited a higher expression of the MEF surface antigens Sca1, CD106, and CD105. The PSCs on mechanically isolated MEFs displayed a higher expression of pluripotency genes, and formed more compact colonies with a stronger tendency to crowding compared with those cultured on cells isolated by enzymatic digestion. The mechanical method based on tissue inter-syringe processing is relatively a rapid and simple method for MEF isolation. Compared to the enzymatic digestion, the cells obtained from this method show higher expression of embryonic fibroblasts markers and a more functional capacity in supporting PSCs culture.


Assuntos
Proliferação de Células/fisiologia , Separação Celular/métodos , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Animais , Ataxina-1/metabolismo , Biomarcadores/metabolismo , Sobrevivência Celular/fisiologia , Células Cultivadas , Endoglina/metabolismo , Fibroblastos/citologia , Humanos , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Reprodutibilidade dos Testes , Tripsina/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
5.
Cell Stress Chaperones ; 25(6): 909-917, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32632734

RESUMO

Non-small cell lung cancer is the most common type of lung cancer, accounting for more than 80% of this tumor. Ubiquitin-specific protease (USP) 14 is one of the 100 deubiquitinating enzymes that is overexpressed in lung cancer and has been validated as a therapeutic target. The aim of this study is to determine whether the accumulation of ubiquitinated proteins results in endoplasmic reticulum (ER) stress-mediated autophagy. To inhibit USP-14, A549 lung cancer cells were treated with USP-14 siRNA and IU1-47 (20 µM). The protein level, mRNA expression, and cell cycle analysis were evaluated using Western blot, real-time PCR, and flow cytometry, respectively. We found that treating A549 cells with USP14 inhibitors significantly reduced the proliferation rate and induced cell cycle arrest at G2/M phase. We also found that USP14 inhibitors did not induce apoptosis but actually induced autophagy through accumulation of ubiquitinated proteins/ER stress/unfolded protein response (UPR) axis. Moreover, we have for the first time demonstrated that the USP14 inhibition induces ER stress-mediated autophagy in A549 cells by activation of c-Jun N-terminal kinase 1 (JNK1). In conclusion, the current investigation represents a new mechanism by which inhibition of USP14 triggers autophagy via ER stress-mediated UPR in A549 cells.


Assuntos
Apoptose , Autofagia , Estresse do Retículo Endoplasmático , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Ubiquitina Tiolesterase/antagonistas & inibidores , Células A549 , Biomarcadores Tumorais/metabolismo , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Ubiquitina Tiolesterase/metabolismo , Proteínas Ubiquitinadas/metabolismo
6.
Indian J Clin Biochem ; 35(1): 109-114, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32071503

RESUMO

Empagliflozin, a SGLT-2 inhibitor, improves diabetic nephropathy through its pleiotropic anti-inflammatory effects. The present study aims to evaluate empagliflozin effects on renal and urinary levels of tubular epithelial cell injury markers in streptozotocin-induced diabetic rats. Empagliflozin at 10 mg/kg (p.o.) was administered for 4 weeks, beginning 8 weeks after induction of diabetes. Renal function as well as markers of renal tubular epithelial cell injury were assessed in kidney tissue homogenates and urine. Empagliflozin was able to ameliorate diabetes induced elevations in serum cystatin C levels. It also alleviated renal KIM-1/NGAL levels and urinary albumin, α-GST, and RBP excretions. In addition to decreasing urinary levels of cell cycle arrest indices i.e. TIMP-2 and IGFBP7, empagliflozin mitigated acetylated NF-κB levels in renal tissues of diabetic rats. As a whole, these findings reveal empagliflozin capability in improving diabetic nephropathy via ameliorating indices of renal inflammation, injury, and cell cycle arrest on streptozotocin-induced diabetic rats.

7.
J Cell Physiol ; 235(10): 6377-6392, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32017093

RESUMO

Embryonic stem cells have potential differentiation ability into a large variety of cell lineages and proved to be an effective therapeutic modality. However, prolonged in vitro and ex-vivo expansions impair embryonic stem cells multipotentiality, and thereby limit their clinical application. In the past few years, research collected attempts to explore new insights into the molecular mechanisms participate in the stemness capacity of embryonic stem cells. Along with these comments, modalities and strategies with the potential to maintain embryonic stem cells multipotentiality are of great interest. In this review, the authors attempted to discuss the pathways participating in the preservation of embryonic stem cells multipotentiality and emphasized the novel strategies that help to harness regenerative potential.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular/fisiologia , Humanos , Células-Tronco Multipotentes/citologia , Transdução de Sinais/fisiologia
8.
Basic Clin Pharmacol Toxicol ; 126(4): 364-373, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31630478

RESUMO

ß-LAPachone (B-LAP) is a naphthoquinone that possesses antioxidant properties. In the present investigation, the protective effect of B-LAP against doxorubicin (DOX)-induced cardiotoxicity was examined in mice. Thirty-five mice were divided into 5 groups: control group, B-LAP (5 mg/kg) group, DOX (15 mg/kg) group, DOX+B-LAP (2.5 mg/kg) group and DOX+B-LAP (5 mg/kg) group. B-LAP was administered orally for 14 days of experimental period. A single dose of DOX (15 mg/kg) was injected intraperitoneally on day 3. Cardiac function, histoarchitecture, indices of oxidative stress and circulating markers of cardiac injury were examined. B-LAP (5 mg/kg) decreased serum levels of lactate dehydrogenase (LDH), creatine kinase MB (CK-MB) and cardiac troponin I (cTnI), and ameliorated cardiac histopathological alterations. In addition to increasing cellular NAD+ /NADH ratio, B-LAP up-regulated the cardiac levels of SIRT1, beclin-1, p-LKB1 and p-AMPK, and reduced the cardiac levels of p-mTOR, interleukin (IL)-1ß, TNF (tumour necrosis factor)-α and caspase-3. B-LAP also elevated the nuclear accumulation of Nrf2 and simultaneously up-regulated the protein levels of haem oxygenase (HO-1) and glutathione S-transferase (GST) in the hearts of DOX mice. While B-LAP reduced malondialdehyde concentrations in heart of DOX-treated mice, it further promoted the activities of cardiac superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase (CAT).In accordance with increased cell survival, B-LAP significantly improved the cardiac function of DOX mice. Collectively, these findings underline the protective potential of B-LAP against DOX-induced cardiotoxicity by regulating autophagy and AMPK/Nrf2 signalling pathway in mice.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Cardiotoxicidade/prevenção & controle , Doxorrubicina/toxicidade , Naftoquinonas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antioxidantes/farmacologia , Autofagia/efeitos dos fármacos , Cardiotoxicidade/etiologia , Sobrevivência Celular/efeitos dos fármacos , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
9.
Transpl Immunol ; 57: 101241, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31446153

RESUMO

BACKGROUND: One of the important factors in the occurrence of acute kidney injury (AKI) among renal transplant patients (RTPs) is ischemia reperfusion injury (IRI). The current study aimed at determining the anti-inflammatory and anti-oxidative effects of melatonin on the complications of IRI and the level of Klotho expression in these patients. METHODS: A total of 40 renal transplant candidates were randomly assigned into placebo or melatonin group receiving the same dose of 3 mg/day. In order to measure serum melatonin levels, inflammatory and oxidative stress factors, renal function biomarkers, and Klotho gene/protein expression, venous blood samples were taken from patients over two different time points, i e, 24 h before the transplantation and at discharge from hospital. RESULTS: Melatonin was associated with improvement in renal transplantation, since the serum level of neutrophil gelatinase-associated lipocalin, as a renal functional marker, significantly decreased (P < .001). The effect of melatonin as a suppressor of inflammation and oxidative stress was also evident in the melatonin group due to a significant reduction in the serum levels of MDA, CP, 8-OHdG, and TNF-α markers (P < .001). CONCLUSIONS: Reduction in serum levels of renal function and oxidative stress/inflammatory markers in the melatonin group indicates that melatonin can inhibit IRI outcomes in RTPs through its anti-oxidant and anti-inflammatory properties. However, these properties do not appear as a result of influence on the level of Klotho gene/protein expression.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Glucuronidase/metabolismo , Transplante de Rim , Melatonina/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , 8-Hidroxi-2'-Desoxiguanosina/sangue , Adulto , Método Duplo-Cego , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glucuronidase/genética , Humanos , Proteínas Klotho , Lipocalina-2/sangue , Masculino , Malondialdeído/sangue , Pessoa de Meia-Idade , Carbonilação Proteica , Fator de Necrose Tumoral alfa/sangue
10.
Iran J Basic Med Sci ; 22(4): 384-390, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31168342

RESUMO

OBJECTIVES: Empagliflozin, a sodium-glucose cotransporter-2 (SGLT-2) inhibitor, possesses verified anti-inflammatory and anti-oxidative stress effects against diabetic nephropathy. The present investigation aims to examine empagliflozin effects on the renal levels of high mobility group box-1 (HMGB1), a potent inflammatory cytokine, and its respective receptor toll-like receptor-4 (TLR-4) in STZ-induced diabetic rats. MATERIALS AND METHODS: Empagliflozin at 10 mg/kg per os (p.o.) was administered for 4 weeks, starting 8 weeks after the induction of diabetes. Renal function, kidney inflammation, oxidative stress, and apoptosis markers as well as renal HMGB1, receptor for advanced glycation end products (RAGE), and TLR-4 levels were assessed. RESULTS: In addition to down-regulating NF-κB activity in renal cortices, empagliflozin reduced renal levels of HMGB1, RAGE, and TLR-4. It alleviated renal inflammation as indicated by diminished renal expressions of inflammatory cytokines and chemokines like tumor necrosis factor-alpha (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) and also decreased urinary levels of interleukin-6 (IL-6) and alpha-1 acid glycoprotein (AGP). Moreover, empagliflozin ameliorated renal oxidative stress as demonstrated by decreased renal malondialdehyde (MDA) and elevated renal activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX). It also suppressed renal caspase-3, the marker of apoptosis; and furthermore, enhanced renal function noticed by the declined levels of serum urea and creatinine. CONCLUSION: These findings underline that empagliflozin is able to attenuate diabetes-related elevations in renal HMGB1 levels, an influential inflammatory cytokine released from the necrotic and activated cells, and its correspondent receptors, i.e., RAGE and TLR-4.

11.
Cardiovasc Toxicol ; 19(4): 297-305, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30835049

RESUMO

Micheliolide (MCL) is a naturally derived anti-inflammatory agent. In the present investigation, we examined the protective potential of MCL against doxorubicin (DOX)-induced cardiotoxicity in mice. Mice were injected with a single 15-mg/kg intraperitoneal dose of DOX at day 1 and the study groups received daily 12.5, 25, and 50 mg/kg doses of MCL for 7 days. Cardiac histopathology, cardiac function, serum markers of cardiac injury, and tissue markers of inflammation, and oxidative stress were examined. MCL decreased serum levels of creatinine kinase MB (CK-MB) and cardiac troponin I (cTnI) levels, ameliorated cardiac tissue architecture, and improved cardiac stroke volume. Apart from reducing the activities of NF-kB p65 subunit, MCL attenuated the cardiac levels of PI3K, phosphorylated (p)-Akt, p-Bad, and caspase-3 levels and simultaneously elevated p-PTEN levels. While the gene expressions of tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1ß) were decreased, the tissue activities of superoxide dismutase (SOD) as well as gene expressions of heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase-1 (NQO1) were increased after treatment with MCL. Furthermore, tissue levels of malondialdehyde (MDA) were also decreased. Collectively, these findings point to the protective effects of MCL against DOX-induced cardiotoxicity by regulating PI3K/Akt/NF-kB signaling pathway in mice.


Assuntos
Anti-Inflamatórios/farmacologia , Doxorrubicina , Cardiopatias/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sesquiterpenos de Guaiano/farmacologia , Animais , Cardiotoxicidade , Modelos Animais de Doenças , Cardiopatias/induzido quimicamente , Cardiopatias/enzimologia , Cardiopatias/patologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Transdução de Sinais
12.
Iran J Basic Med Sci ; 22(2): 179-186, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30834084

RESUMO

OBJECTIVES: Cisplatin is an effective antineoplastic agent; its clinical utility, however, is limited by a few salient toxic side effects like nephrotoxicity. This study aimed to determine the potential protective effects of tangeretin, a citrus-derived flavonoid, against renal tubular cell injury in cisplatin-induced renal toxicity of rats. MATERIALS AND METHODS: Tangeretin was injected intraperitoneally at 2.5 and 5 mg/kg doses for 10 days, and a single dose of cisplatin (8 mg/kg) was injected on the 7th day. Tests of kidney function and tubular injury in renal tissues and urine together with oxidative stress and inflammation markers were examined. RESULTS: Tangeretin ameliorated cisplatin-induced elevations in serum creatinine, BUN, and histopathologic changes. It also attenuated kidney oxidative stress elicited by cisplatin as demonstrated by reduced MDA and increased GSH, CAT, and SOD activities, elevated Nrf2 expression and protein levels of its downstream effectors, HO-1 and NQO-1. Tangeretin further alleviated inflammation evoked by cisplatin as indicated by reduced NF-κB p65 subunit phosphorylation with a simultaneous decrement in its downstream effectors IL-1ß and TNF-α expression and protein levels. Moreover, it declined caspase-3 protein levels and TUNEL positive cells in the kidneys, the markers of apoptosis and DNA fragmentation, thus improving renal endurance. Additionally, tangeretin mitigated renal levels of KIM-1 and NGAL, as well as urinary cystatin C and ß2-microglobulin concentrations, the markers of renal tubular injury. CONCLUSION: Collectively, these data signify the binary profit of tangeretin: enhancement of renal protective mechanisms against cisplatin and attenuation of renal tubular cell injuries induced by the agent.

13.
Biochem Pharmacol ; 163: 94-100, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30738797

RESUMO

Cisplatin is a broadly prescribed anti-tumor agent for the treatment of diverse cancers. Therapy with cisplatin, however, is associated with various adverse effects including nephrotoxicity and ototoxicity. AMP kinase (AMPK), an evolutionarily conserved enzyme, functions as the fundamental regulator of energy homeostasis. While AMPK activation protects normal tissues against cisplatin-induced toxicities, its impact in cancer is context-dependent and there is no single, uniform role for AMPK. On one hand, some report that AMPK activation augments cisplatin-induced apoptosis in cancer, while on the other hand, few reports indicate that AMPK activation rescues cancer cells from the cytotoxicity induced by cisplatin. Here we review the most salient signaling pathways regulated by AMPK with an emphasis on their relation to cisplatin toxicity and yet discuss context-dependent functions of AMPK in cancer.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/enzimologia , Proteínas Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/tendências , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Humanos , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
14.
Naunyn Schmiedebergs Arch Pharmacol ; 392(5): 633-640, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30671613

RESUMO

ß-Lapachone (B-LAP) is a natural naphtaquinone with established anti-oxidative stress and anti-cancer activities. We aimed to investigate B-LAP protective potential against doxorubicin (DOX)-induced nephrotoxicity in mice. The mice received an oral dose of B-LAP followed by a single intraperitoneal injection of 20 mg/kg DOX a day later. They were then treated for 4 days with 1.25 mg/kg, 2.5 mg/kg, and 5 mg/kg doses of B-LAP. Renal levels of NAD+/NADH ratios, p-AMPKα, p-NF-κB p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6) along with renal expressions of TNF-α, IL-1ß, and IL-6 were examined. Serum levels of kidney function markers as well as renal histopathology were also investigated. In addition to increasing the activities of p-AMPKα, B-LAP elevated NAD+/NADH ratios in the kidneys and decreased the renal levels of nuclear p-NF-κB and its correspondent downstream effectors TNF-α, IL-1ß, IL-6, and iNOS in the kidneys. Also, B-LAP effectively ameliorated renal architectural changes and attenuated serum levels of urea, creatinine, and cystatin C. Collectively, these findings suggest the protective actions of B-LAP against DOX-induced nephrotoxicity in mice.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Doxorrubicina/efeitos adversos , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Naftoquinonas/uso terapêutico , Substâncias Protetoras/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Citocinas/genética , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Camundongos Endogâmicos C57BL , NAD/metabolismo , NF-kappa B/metabolismo , Naftoquinonas/farmacologia , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos
15.
Nutr Cancer ; 71(3): 444-451, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30616380

RESUMO

OBJECTIVE: Gastric cancer is the third-leading cause of cancer-related mortality and the fifth most common cancer globally. Polyunsaturated fatty acids (PUFAs) are considered as functional ingredients that improve the efficacy of chemotherapeutic drugs. The aim of this study is to investigate the effect of PUFAs administration on matrix metalloproteinases (MMPs). METHODS: This study was designed as a randomized, double-blind trial. Thirty-four newly diagnosed patients with gastric cancer were randomly divided into two groups: control group (n = 17) and case group (n =17). Both groups received the same dose (75 mg/m2) of cisplatin. Control group received cisplatin plus placebo and the case group received cisplatin plus PUFAs [3600 mg/day, for three courses (each course included 3 weeks)]. The mRNA and protein expression of MMPs determined by real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC), respectively. RESULTS: The relative gene expression of MMP-1 and MMP-9 was significantly lower in case group than control. The protein expression of MMP-1 and MMP-9 was significantly lower in case group than control. CONCLUSION: According to the results of this study, PUFAs reduced the expression of MMPs in gastric cancer cells. It seems that PUFAs may have an inhibitory effect on invasion and metastasis of gastric cancer cells.


Assuntos
Adenocarcinoma/tratamento farmacológico , Cisplatino/uso terapêutico , Ácidos Graxos Insaturados/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Metaloproteinases da Matriz/genética , Neoplasias Gástricas/tratamento farmacológico , Adenocarcinoma/enzimologia , Idoso , Idoso de 80 Anos ou mais , Método Duplo-Cego , Feminino , Humanos , Masculino , Metaloproteinase 1 da Matriz/análise , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 9 da Matriz/análise , Metaloproteinase 9 da Matriz/genética , Pessoa de Meia-Idade , Invasividade Neoplásica/prevenção & controle , Metástase Neoplásica/prevenção & controle , RNA Mensageiro/análise , Neoplasias Gástricas/enzimologia
16.
J Cell Physiol ; 234(6): 8040-8054, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30341908

RESUMO

The Wnt signaling pathway consists of various downstream target proteins that have substantial roles in mammalian cell proliferation, differentiation, and development. Its aberrant activity can lead to uncontrolled proliferation and tumorigenesis. The posttranslational connection of fatty acyl chains to Wnt proteins provides the unique capacity for regulation of Wnt activity. In spite of the past belief that Wnt molecules are subject to dual acylation, it has been shown that these proteins have only one acylation site and undergo monounsaturated fatty acylation. The Wnt monounsaturated fatty acyl chain is more than just a hydrophobic coating and appears to be critical for Wnt signaling, transport, and receptor activation. Here, we provide an overview of recent findings in Wnt monounsaturated fatty acylation and the mechanism by which this lipid moiety regulates Wnt activity from the site of production to its receptor interactions.


Assuntos
Acilação/genética , Carcinogênese/genética , Metabolismo dos Lipídeos/genética , Proteínas Wnt/genética , Carcinogênese/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , Humanos , Processamento de Proteína Pós-Traducional , Transporte Proteico/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/genética
17.
J. physiol. biochem ; 74(3): 467-478, ago. 2018. tab, graf, ilus
Artigo em Inglês | IBECS | ID: ibc-179000

RESUMO

Despite the effectiveness of renin-angiotensin blockade in retarding diabetic nephropathy progression, a considerable number of patients still develop end-stage renal disease. The present investigation aims to evaluate the protective potential of FPS-ZM1, a selective inhibitor of receptor for advanced glycation end products (RAGE), alone and in combination with valsartan, an angiotensin receptor blocker, against glomerular injury parameters in streptozotocin-induced diabetic rats. FPS-ZM1 at 1 mg/kg (i.p.), valsartan at 100 mg/kg (p.o.), and their combination were administered for 4 weeks, starting 2 months after diabetes induction in rats. Tests for kidney function, glomerular filtration barrier, and podocyte slit diaphragm integrities were performed. Combined FPS-ZM1/valsartan attenuated diabetes-induced elevations in renal levels of RAGE and phosphorylated NF-κB p65 subunit. It ameliorated glomerular injury due to diabetes by increasing glomerular nephrin and synaptopodin expressions, mitigating renal integrin-linked kinase (ILK) levels, and lowering urinary albumin, collagen type IV, and podocin excretions. FPS-ZM1 also improved renal function as demonstrated by decreasing levels of serum cystatin C. Additionally, the combination also alleviated indices of renal inflammation as revealed by decreased renal monocyte chemoattractant protein 1 (MCP-1) and chemokine (C-X-C motif) ligand 12 (CXCL12) expressions, F4/80-positive macrophages, glomerular TUNEL-positive cells, and urinary alpha-1-acid glycoprotein (AGP) levels. These findings underline the benefits of FPS-ZM1 added to valsartan in alleviating renal glomerular injury evoked by diabetes in streptozotocin rats and suggest FPS-ZM1 as a new potential adjunct to the conventional renin-angiotensin blockade


Assuntos
Humanos , Masculino , Ratos , Benzamidas/uso terapêutico , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/prevenção & controle , Barreira de Filtração Glomerular , Valsartana/uso terapêutico , Insuficiência Renal/prevenção & controle , Administração Oral , Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Biomarcadores , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/fisiopatologia , Barreira de Filtração Glomerular/metabolismo , Barreira de Filtração Glomerular/patologia , Valsartana/administração & dosagem
18.
Free Radic Res ; 52(7): 808-817, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29865885

RESUMO

Despite being an efficacious anticancer agent, the clinical utility of cisplatin is hindered by its cardinal side effects. This investigation aimed to appraise potential protective impact of dunnione, a natural naphthoquinone pigment with established NQO1 stimulatory effects, on cisplatin nephrotoxicity of rats. Dunnione was administered orally at 10 and 20 mg/kg doses for 4 d and a single injection of cisplatin was delivered at the second day. Renal histopathology, inflammatory/oxidative stress/apoptotic markers, kidney function, and urinary markers of renal injury were assessed. Dunnione repressed cisplatin-induced inflammation in the kidneys as indicated by decreased TNF-α/IL-1ß levels, and reduced nuclear phosphorylated NF-κB p65. This agent also obviated cisplatin-invoked oxidative stress as elucidated by decreased MDA/GSH levels and increased SOD/CAT activities. Dunnione, furthermore, improved renal histological deteriorations as well as caspase-3 activities and terminal deoxynucleotidyl transferase (TUNEL) positive cells, the indicators of apoptosis. Moreover, it up-regulated nuclear Nrf2 and cytosolic haeme-oxygenase-1 (HO-1) and NQO1 levels; meanwhile, promoted NAD+/NADH ratios followed by enhancing the activities of Sirt1 and PARP1; and further attenuated nuclear acetylated NF-κB p65. Dunnione additionally declined cisplatin-evoked retrogression in renal function and upraise in urinary markers of glomerular and tubular injury as demonstrated by decreased serum urea and creatinine with simultaneous reductions in urinary excretions of collagen type IV, podocin, cystatin C, and retinol-binding protein (RBP). Altogether, these findings offer dunnione as a potential protective agent against cisplatin-induced nephrotoxicity in rats.


Assuntos
Cisplatino/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Nefropatias/prevenção & controle , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD/metabolismo , Naftoquinonas/farmacologia , Substâncias Protetoras/farmacologia , Animais , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Inflamação/prevenção & controle , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
19.
Clin Biochem ; 55: 3-8, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29608890

RESUMO

Post-transplant ischemic acute kidney injury (AKI), secondary to ischemia reperfusion injury (IRI), is a major problem influencing on the short and long term graft and patient survival. Many molecular and cellular modifications are observed during IRI, for example, tissue damage result production of reactive oxygen species (ROS), cytokines, chemokines, and leukocytes recruitment which are activated by NF-κB (nuclear factor kappa B) signaling pathway. Therefore, inhibiting these processes can significantly protect renal parenchyma from tissue damage. Klotho protein, mainly produced in distal convoluted tubules (DCT), is an anti-senescence protein. There is increasing evidence to confirm a relationship between Klotho levels and renal allograft function. Many studies have also demonstrated that expression of the Klotho gene would be down regulated with IRI, so it will be used as an early biomarker for acute kidney injury after renal transplantation. Other studies suggest that Klotho may have a renoprotective effect for attenuating of kidney injury. In this review, we will discuss pathophysiology of IRI-induced acute kidney injury and its relation with klotho level in renal transplantation procedure.


Assuntos
Injúria Renal Aguda/metabolismo , Glucuronidase/metabolismo , Transplante de Rim , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Aloenxertos , Animais , Citocinas/metabolismo , Humanos , Proteínas Klotho , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia
20.
Artif Cells Nanomed Biotechnol ; 46(sup1): 283-292, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29310467

RESUMO

The global burden of cancer have encouraged oncologists to develop novel strategies for treatment. Present study was proposed to develop Arginyl-glycyl-aspartic acid (RGD)-containing nanostructured lipid carriers (NLC) as a delivery system for improving the anticancer capability of epigallocatechin gallate (EGCG) on breast cancer cell line by attaching to integrin superfamily on cancer cells. For this purpose, RGD-containing EGCG-loaded NLC were prepared by hot homogenization technique and characterized by different techniques. Then, cytotoxic and apoptotic effects of prepared nanoparticles and their uptake into cells was evaluated. As results, the nanoparticles with particle size of 85 nm, zeta potential of -21 mV, encapsulation of 83% were prepared. Cytotoxicity and apoptosis experiments demonstrated that EGCG-loaded NLC-RGD possessed greatest apoptotic activity. Furthermore, it has been shown that, EGCG-loaded NLC-RGD causes cell cycle arresting more effective than EGCG. Therefore, loading EGCG into NLC-RGD make it more effective in both targeting and accumulation into tumour cells, which results from specialized uptake mechanism by adhesion to αvß3 integrin. The results strengthen our hope that loading EGCG into RGD-containing NLC could possibly overcome the therapeutic limitations of EGCG and make it more effective in cancer therapy.


Assuntos
Catequina/análogos & derivados , Portadores de Fármacos/química , Lipídeos/química , Nanopartículas/química , Oligopeptídeos/química , Catequina/química , Catequina/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...