Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0303091, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38905169

RESUMO

The primary objective of this investigation was to assess the viability of free and encapsulated Lactobacillus plantarum probiotics in mango juice and under simulated gastrointestinal conditions. Specifically, the probiotics were encapsulated using sodium alginate and alginate-soy protein isolate through the internal gelation method, and the obtained probiotics were characterized for various attributes. Both free and encapsulated probiotics were exposed to challenging conditions, including thermal stress, low temperature, and simulated gastrointestinal conditions. Additionally, both types of probiotics were incorporated into mango juice, and their survival was monitored over a 28-day storage period. Following viability under simulated gastrointestinal conditions, the count of free and encapsulated probiotic cells decreased from initial levels of 9.57 log CFU/mL, 9.55 log CFU/mL, and 9.53 log CFU/mL, 9.56 log CFU/mL to final levels of 6.14 log CFU/mL, 8.31 log CFU/mL, and 6.24 log CFU/mL, 8.62 log CFU/mL, respectively. Notably, encapsulated probiotics exhibited a decrease of 1.24 log CFU and 0.94 log CFU, while free cells experienced a reduction of 3.43 log CFU and 6.24 log CFU in mango juice over the storage period. Encapsulated probiotics demonstrated higher viability in mango juice compared to free probiotics throughout the 28-day storage period. These findings suggest that mango juice can be enriched with probiotics to create a health-promoting beverage.


Assuntos
Alginatos , Lactobacillus plantarum , Viabilidade Microbiana , Probióticos , Lactobacillus plantarum/fisiologia , Alginatos/química , Trato Gastrointestinal/microbiologia , Mangifera/microbiologia , Géis/química , Sucos de Frutas e Vegetais/microbiologia , Proteínas de Soja/química
2.
J Phys Condens Matter ; 34(21)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35240586

RESUMO

The interfacial perpendicular magnetic anisotropy (PMA) plays a key role in spintronic applications such as memory recording and computational devices. Despite robust PMA being reported at the Fe/MgO interface, there are still inconsistencies in the disorder effects on the interfacial magnetic anisotropy. Here we reported a comprehensive study of the influence of the interfacial disorder, including the underoxidization, overoxidization, and oxygen migration, on the PMA of the Fe/MgO interface using first-principles calculations. Compared to the pristine Fe/MgO interface, the underoxidation at the Fe/MgO interface keeps the interfacial PMA but reduces the interfacial anisotropy constant (Ki). The overoxidization and oxygen migration at the interface both reduce theKiand even switch the easy magnetization axis from the out-of-plane to in-plane direction at high oxygen percentage. In all the cases, theKiwas found strongly correlated to the difference of the orbital magnetic moment along the in-plane and out-of-plane direction. Calculated layer-resolved and orbital-resolvedKirevealed that the orbital coupling between thedxyanddx2-y2states of the interfacial Fe layer plays a key role in determining the interfacial magnetic anisotropy. This work provides deep insights into the oxidation effects on the interfacial magnetic anisotropy of Fe/MgO system and a possible avenue to tune theKivia interfacial engineering.

3.
ACS Appl Mater Interfaces ; 14(7): 9734-9743, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35139635

RESUMO

The perpendicular magnetic anisotropy (PMA) at ferromagnet/insulator interfaces has important technological applications, such as in the fields of magnetic recording and sensing devices. The perpendicular magnetic tunnel junctions (p-MTJs) with strong PMA have recently attracted increasing interest because they offer high stability and device performance toward low energy consumption. Heusler alloys are a large family of compounds that offer promising magnetic properties for developing p-MTJs. However, it is challenging to select appropriate combinations of Heusler ferromagnets and insulators with the desired interfacial properties. Here, we report a systematic high-throughput screening approach to search for candidate Heusler/MgO material interfaces with strong PMA and other desired material properties for spintronic technologies. On the basis of the open quantum material repositories, we developed a series of material descriptors, including formation energy, convex hull distance, magnetic ordering, lattice misfit, magnetic anisotropy constant, cleavage energy, and tunnel magnetoresistance, to filter candidate Heusler/MgO interfaces among the possible 40 000 ternary Heusler compounds. After a comprehensive screening, five full-Heusler compounds, including Co2CrAl, Co2FeAl, Co2HfSn, Fe2IrGa, and Mn2IrGe, and two half-Heusler compounds, PtCrSb and PtMnAs, were found to be promising for designing p-MTJs. This work demonstrates a new way for the high-throughput design of functional material interfaces for spintronic applications via exploiting the open quantum material repositories and developing effective material descriptors along with the large-scale ab initio calculations for material interfaces.

4.
Sci Rep ; 11(1): 1240, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441783

RESUMO

Using density functional theory calculations, we found that recently high-pressure synthesized double perovskite oxide [Formula: see text] exhibits ferrimagnetic (FiM) Mott-insulating state having an energy band gap of 0.20 eV which confirms the experimental observations (Feng et al. in Inorg Chem 58:397-404, 2019). Strong antiferromagnetic superexchange interactions between high-energy half-filled [Formula: see text]-[Formula: see text] and low-energy partially filled [Formula: see text] orbitals, results in a FiM spin ordering. Besides, the effect of 3d transition metal (TM = Cr, Mn, and Fe) doping with 50% concentration at Ni sites on its electronic and magnetic properties is explored. It is established that smaller size cation-doping at the B site enhances the structural distortion, which further gives strength to the FiM ordering temperature. Interestingly, our results revealed that all TM-doped structures exhibit an electronic transition from Mott-insulating to a half-metallic state with effective integral spin moments. The admixture of Ir 5d orbitals in the spin-majority channel are mainly responsible for conductivity, while the spin minority channel remains an insulator. Surprisingly, a substantial reduction and enhancement of spin moment are found on non-equivalent Ir and oxygen ions, respectively. This leads the Ir ion in a mixed-valence state of [Formula: see text] and [Formula: see text] in all doped systems having configurations of [Formula: see text] ([Formula: see text]) and [Formula: see text] ([Formula: see text]), respectively. Hence, the present work proposes that doping engineering with suitable impurity elements could be an effective way to tailor the physical properties of the materials for their technological potential utilization in advanced spin devices.

5.
Sci Rep ; 10(1): 13778, 2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792535

RESUMO

Using ab-initio calculations, the electronic and magnetic properties of double perovskite oxide [Formula: see text] with two type of strains: biaxial (along the [110]-direction) and hydrostatic (along [111]-direction) are investigated. The ground state of the unstrained system is half-metallic ferrimagnetic, due to a strong antiferromagnetic (AFM) coupling between Cr and Re atoms within both (GGA and GGA+U) exchange-correlation potentials. It is demonstrated that the robustness of half-metallicity can be preserved under the influence of both biaxial and hydrostatic strains. Interestingly, a transition from ferri-to-ferromagnetic is established due to Re spin flipping to that of the Cr ion (i.e. Cr and Re spin becomes parallel) within the GGA+U method for both biaxial and hydrostatic tensile strains of [Formula: see text]. The strong confinement of orbitals due to tensile strain results in the decrease of electron hopping which further reduced the AFM coupling strength between Cr and Re atoms, this leads to a ferri-to-ferromagnetic transition. However, the GGA scheme holds the ferrimagnetic state with both kinds of strains. This work shows that tensile strain is a feasible way to optimize the magnetic properties of perovskite oxides, which are presumed to be beneficial for spintronic technology.

6.
Phys Chem Chem Phys ; 22(32): 17969-17977, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32748923

RESUMO

Half-metallic ferromagnetic/ferrimagnetic (FiM) materials are a matter of enormous interest due to their potential technological applications in solid-state electronic devices. In this way, strain plays an important role to tune or control the physical properties of the systems; therefore, the influence of both biaxial ([110]) and hydrostatic ([111]) strain on the electronic and magnetic properties of recently synthesized double perovskite oxide Lu2NiIrO6 is investigated using density-functional theory calculations. The unstrained system exhibits a FiM Mott-insulating (i.e., having an energy gap of 0.20 eV) ground state due to strong antiferromagnetic superexchange coupling between high-energy half-filled Ni2+-e2g↑ and low-energy partially filled Ir4+ t32g↑t22g↓ orbitals. Interestingly, a half-metallic FiM state is predicted under biaxial and hydrostatic compressive strains of -8% and -6%, respectively. The admixture of Ir 5d orbitals in the spin-majority channel is mainly responsible for the conductivity with small contributions from Ni 3d orbitals. In contrast, all the tensile strain systems show almost the same electronic behavior (Mott-insulating FiM states) as found in the case of the unstrained system. The magnetic moments of the Ni (Ir) ion slightly decrease and increase as a function of compressive and tensile strains due to shortening and lengthening of the Ni-O(Ir-O) bond lengths, respectively. Moreover, our calculations show that compressive strain enhances the structural distortions, which could help to increase the Curie temperature of the system.

7.
Sci Rep ; 7(1): 8439, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28814714

RESUMO

Using first-principles total energy calculations we have evaluated the thermodynamics and the electronic properties of intrinsic vacancy defects in orthorhombic CaZrO3. Charge density calculations and the atoms-in-molecules concept are used to elucidate the changes in electronic properties of CaZrO3 upon the introduction of vacancy defects. We explore the chemical stability and defect formation energies of charge-neutral as well as of charged intrinsic vacancies under various synthesis conditions and also present full and partial Schottky reaction energies. The calculated electronic properties indicate that hole-doped state can be achieved in charge neutral Ca vacancy containing CaZrO3 under oxidation condition, while reduction condition allows to control the electrical conductivity of CaZrO3 depending on the charge state and concentration of oxygen vacancies. The clustering of neutral oxygen vacancies in CaZrO3 is examined as well. This provides useful information for tailoring the electronic properties of this material. We show that intentional incorporation of various forms of intrinsic vacancy defects in CaZrO3 allows to considerably modify its electronic properties, making this material suitable for a wide range of applications.

8.
Phys Chem Chem Phys ; 18(46): 31924-31929, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27844082

RESUMO

We explored the possibility of producing a high-mobility two-dimensional electron gas (2DEG) in the LaAlO3/SrGeO3 and LaGaO3/BaSnO3 heterostructures using first-principles electronic structure calculations. Our results show that the 2DEG occurs at n-type LaAlO3/SrGeO3 and LaGaO3/BaSnO3 interfaces. Compared to the prototype LaAlO3/SrTiO3, LaAlO3/SrGeO3 and LaGaO3/BaSnO3 systems yield comparable total interfacial charge carrier density but much lower electron effective mass (nearly half the value of LaAlO3/SrTiO3), thus resulting in about twice larger electron mobility and enhanced interfacial conductivity. This work demonstrates that SrGeO3 and BaSnO3 can be potential substrate materials to achieve a high-mobility 2DEG in the perovskite-oxide heterostructures.

9.
ACS Appl Mater Interfaces ; 8(46): 31959-31967, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27800684

RESUMO

By using first-principles electronic structure calculations, we explored the possibility of producing two-dimensional electron gas (2DEG) in nonpolar/nonpolar AHfO3/SrTiO3 (A = Ca, Sr, and Ba) heterostructures. Two types of nonpolar/nonpolar interfaces, (AO)0/(TiO2)0 and (HfO2)0/(SrO)0, each with AO and HfO2 surface terminations, are modeled, respectively. The polarization domain and resulting interfacial electronic property are found to be more sensitive to the surface termination of the film rather than the interface model. As film thickness increases, an insulator-to-metal transition is found in all the heterostructures with HfO2 surface termination: for (AO)0/(TiO2)0 interfaces, predicted critical film thickness for an insulator-to-metal transition is about 7, 6, and 3 unit cells for CaHfO3/SrTiO3, SrHfO3/SrTiO3, and BaHfO3/SrTiO3, respectively; for (HfO2)0/(SrO)0 interfaces, the critical film thickness is about 7.5, 5.5, and 4.5 unit cells, respectively. In contrast, for the heterostructures with AO surface termination, CaHfO3/SrTiO3 exhibits a much larger critical film thickness about 11-12 unit cells for an insulator-to-metal transition; while SrHfO3/SrTiO3 and BaHfO3/SrTiO3 do not show any polarization behavior even film thickness increases up to 20 unit cells. The strain-induced polarization behavior was well-elucidated from energy versus polarization profile. This work is expected to stimulate further experimental investigation to the interfacial conductivity in the nonpolar/nonpolar AHfO3/SrTiO3 HS.

10.
Sci Rep ; 6: 34667, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27708415

RESUMO

The two-dimensional electron gas (2DEG) formed at the interface between two insulating oxides such as LaAlO3 and SrTiO3 (STO) is of fundamental and practical interest because of its novel interfacial conductivity and its promising applications in next-generation nanoelectronic devices. Here we show that a group of combinatorial descriptors that characterize the polar character, lattice mismatch, band gap, and the band alignment between the perovskite-oxide-based band insulators and the STO substrate, can be introduced to realize a high-throughput (HT) design of SrTiO3-based 2DEG systems from perovskite oxide quantum database. Equipped with these combinatorial descriptors, we have carried out a HT screening of all the polar perovskite compounds, uncovering 42 compounds of potential interests. Of these, Al-, Ga-, Sc-, and Ta-based compounds can form a 2DEG with STO, while In-based compounds exhibit a strain-induced strong polarization when deposited on STO substrate. In particular, the Ta-based compounds can form 2DEG with potentially high electron mobility at (TaO2)+/(SrO)0 interface. Our approach, by defining materials descriptors solely based on the bulk materials properties, and by relying on the perovskite-oriented quantum materials repository, opens new avenues for the discovery of perovskite-oxide-based functional interface materials in a HT fashion.

11.
Phys Chem Chem Phys ; 18(34): 23737-45, 2016 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-27514742

RESUMO

Ab initio density functional theory calculations are employed for exploring the thermodynamic stability, vacancy defect formation energy and electronic structure of pristine and non-stoichiometric BaZrO3. The electronic properties of BaZrO3 show the hole-doped and insulating nature of cation and oxygen vacancies, respectively. The changes in the electronic properties of intrinsic vacancy containing BaZrO3 are analyzed in terms of electronic band structure, charge density and effective Bader charges. The relative stability of the formation of charge neutral and fully charged intrinsic vacancy defects in BaZrO3 is investigated in different chemical growth environments and the full and partial Schottky reactions are computed. Calculations are also performed to study the effects of oxygen vacancy clustering in different crystallographic planes. These calculations enable us to predict n-type conductivity in non-stoichiometric BaZrO3, which is useful for tailoring the electrical conduction of this material. Our results suggest that the semiconducting, p- and n-type character of BaZrO3 can be realized to enhance its device application by means of intentional incorporation of vacancy defects.

12.
Phys Chem Chem Phys ; 18(9): 6831-8, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26878205

RESUMO

We studied the influence of uniaxial [100] strain (-1% to +1%) on the electron transport properties of a two-dimensional electron gas (2DEG) at the n-type interface of the LaAlO3/SrTiO3(LAO/STO) heterostructure (HS)-based slab system from the perspective of polarization effects via first-principles density functional theory calculations. We first analyzed the unstrained system, and found that the induced polarization toward the vacuum in the LAO film leads to a small charge carrier density on the order of 10(13) cm(-2) (less than the theoretical value of 3.3 × 10(14) cm(-2) from the superlattice-model-based polar catastrophe mechanism), which is in excellent agreement with the experimental values of oxygen-annealed LAO/STO HS samples. Upon applying [100] tensile strain on the STO substrate, we found a significant reduction of the induced polarization in the LAO film. This reduction weakens the driving force against charge transfer from LAO to STO, causing an increase in the interfacial charge carrier density. The uniaxial strain also leads to a decrease of the effective mass of interfacial mobile electrons, resulting in a higher electron mobility. These findings suggest that applying uniaxial [100] tensile strain on the STO substrate can significantly enhance the interfacial conductivity of the LAO/STO HS system, which gives a comprehensive explanation for experimental observations. In contrast, compressively strained LAO/STO systems show stronger LAO film polarization than the unstrained system, which reduces the interfacial charge carrier density and increases the electron effective mass, thus suppressing the interfacial conductivity.

13.
Phys Chem Chem Phys ; 18(4): 2379-88, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26562134

RESUMO

The two-dimensional electron gas (2DEG) formed at the n-type (LaO)(+1)/(TiO2)(0) interface in the polar/nonpolar LaAlO3/SrTiO3 (LAO/STO) heterostructure (HS) has emerged as a prominent research area because of its great potential for nanoelectronic applications. Due to its practical implementation in devices, desired physical properties such as high charge carrier density and mobility are vital. In this respect, 4d and 5d transition metal doping near the interfacial region is expected to tailor electronic properties of the LAO/STO HS system effectively. Herein, we studied Nb and Ta-doping effects on the energetics, electronic structure, interfacial charge carrier density, magnetic moment, and the charge confinements of the 2DEG at the n-type (LaO)(+1)/(TiO2)(0) interface of LAO/STO HS using first-principles density functional theory calculations. We found that the substitutional doping of Nb(Ta) at Ti [Nb(Ta)@Ti] and Al [Nb(Ta)@Al] sites is energetically more favorable than that at La [Nb(Ta)@La] and Sr [Nb(Ta)@Sr] sites, and under appropriate thermodynamic conditions, the changes in the interfacial energy of HS systems upon Nb(Ta)@Ti and Nb(Ta)@Al doping are negative, implying that the formation of these structures is energetically favored. Our calculations also showed that Nb(Ta)@Ti and Nb(Ta)@Al doping significantly improve the interfacial charge carrier density with respect to that of the undoped system, which is because the Nb(Ta) dopant introduces excess free electrons into the system, and these free electrons reside mainly on the Nb(Ta) ions and interfacial Ti ions. Hence, along with the Ti 3d orbitals, the Nb 4d and Ta 5d orbitals also contribute to the interfacial metallic states; accordingly, the magnetic moments on the interfacial Ti ions increase significantly. As expected, the Nb@Al and Ta@Al doped LAO/STO HS systems show higher interfacial charge carrier density than the undoped and other doped systems. In contrast, Nb@Ti and Ta@Ti doped systems may show higher charge carrier mobility because of the lower electron effective mass.

14.
ACS Appl Mater Interfaces ; 8(1): 390-9, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26649746

RESUMO

We studied strain-induced polarization and resulting conductivity in the nonpolar/nonpolar CaZrO3/SrTiO3 (CZO/STO) heterostructure (HS) system by means of first-principles electronic structure calculations. By modeling four types of CZO/STO HS-based slab systems, i.e., TiO2/CaO and SrO/ZrO2 interface models with CaO and ZrO2 surface terminations in each model separately, we found that the lattice-mismatch-induced compressive strain leads to a strong polarization in the CZO film and that as the CZO film thickness increases there exists an insulator-to-metal transition. The polarization direction and critical thickness of the CZO film for forming interfacial metallic states depend on the surface termination of CZO film in both types of interface models. In the TiO2/CaO and SrO/ZrO2 interface models with CaO surface termination, the strong polarization drives the charge transfer from the CZO film to the first few TiO2 layers in the STO substrate, leading to the formation of two-dimensional electron gas (2DEG) at the interface. In the HS models with ZrO2 surface termination, two polarization domains with opposite directions are in the CZO film, which results in the charge transfer from the middle CZO layer to the interface and surface, respectively, leading to the coexistence of the 2DEG on the interface and the two-dimensional hole gas (2DHG) at the middle CZO layer. These findings open a new avenue to achieve 2DEG (2DHG) in perovskite-based HS systems via polarization discontinuity.

15.
ACS Appl Mater Interfaces ; 7(26): 14294-302, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26062403

RESUMO

Tailoring the two-dimensional electron gas (2DEG) at the n-type (TiO2)(0)/(LaO)(+1) interface between the polar LaAlO3 (LAO) and nonpolar SrTiO3 (STO) insulators can potentially provide desired functionalities for next-generation low-dimensional nanoelectronic devices. Here, we propose a new approach to tune the electronic and magnetic properties in the n-type LAO/STO heterostructure (HS) system via electron doping. In this work, we modeled four types of layer doped LAO/STO HS systems with Sn dopants at different cation sites and studied their electronic structures and interface energetics by using first-principles electronic structure calculations. We identified the thermodynamic stability conditions for each of the four proposed doped configurations with respect to the undoped LAO/STO interface. We further found that the Sn-doped LAO/STO HS system with Sn at Al site (Sn@Al) is energetically most favorable with respect to decohesion, thereby strengthening the interface, while the doped HS system with Sn at La site (Sn@La) exhibits the lowest interfacial cohesion. Moreover, our results indicate that all the Sn-doped LAO/STO HS systems exhibit the n-type conductivity with the typical 2DEG characteristics except the Sn@La doped HS system, which shows p-type conductivity. In the Sn@Al doped HS model, the Sn dopant exists as a Sn(4+) ion and introduces one additional electron into the HS system, leading to a higher charge carrier density and larger magnetic moment than that of all the other doped HS systems. An enhanced charge confinement of the 2DEG along the c-axis is also found in the Sn@Al doped HS system. We hence suggest that Sn@Al doping can be an effective way to enhance the electrical conduction and magnetic moment of the 2DEG in LAO/STO HS systems in an energetically favorable manner.

16.
ACS Appl Mater Interfaces ; 7(9): 5305-11, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25688656

RESUMO

The highly mobile two-dimensional electron gas (2DEG) formed at the polar/nonpolar LaAlO3/SrTiO3 (LAO/STO) heterostructure (HS) is a matter of great interest because of its potential applications in nanoscale solid-state devices. To realize practical implementation of the 2DEG in device design, desired physical properties such as tuned charge carrier density and mobility are necessary. In this regard, polar perovskite-based transition metal oxides can act as doping layers at the interface and are expected to tune the electronic properties of 2DEG of STO-based HS systems dramatically. Herein, we investigated the doping effects of LaTiO3(LTO) layers on the electronic properties of 2DEG at n-type (LaO)(+1)/(TiO2)(0) interface in the LAO/STO HS using spin-polarized density functional theory calculations. Our results indicate an enhancement of orbital occupation near the Fermi energy, which increases with respect to the number of LTO unit cells, resulting in a higher charge carrier density of 2DEG than that of undoped system. The enhanced charge carrier density is attributed to an extra electron introduced by the Ti 3d(1) orbitals from the LTO dopant unit cells. This conclusion is consistent with the recent experimental findings (Appl. Phys. Lett. 2013, 102, 091601). Detailed charge density and partial density of states analysis suggests that the 2DEG in the LTO-doped HS systems primarily comes from partially occupied dyz and dxz orbitals.

17.
ACS Appl Mater Interfaces ; 6(24): 22351-8, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25486683

RESUMO

The emerging two-dimensional electron gas (2DEG) at the interface between polar LaAlO3 (LAO) and nonpolar SrTiO3 (STO) provides potential applications in low-dimensional nanoelectronic devices because of its exceptional electron transport property. To form 2DEG in the LAO/STO heterostructure (HS), a minimum thickness of approximately 4 unit cells of LAO is necessary. Herein, we modeled the n-type (TiO2)(0)/(LaO)(+1) HS by depositing (LAO)n (n = 4, 5, and 6) thin films on the STO substrate and explored strain effects on the critical thickness for forming 2DEG in the LAO/STO HS-based slab systems using first-principles electronic structure calculations. A vacuum layer was added along the [001] direction on the LAO film to resemble the actual epitaxial growth process of the materials. An insulator-to-metal transition is predicted in unstrained (LAO)n/STO systems when n ≥ 5. Our calculations indicate that O 2px/py states give rise to the surface conductivity, while Ti 3dxy states are responsible for the interfacial conductivity. For the tensilely strained HS system, an increased film thickness of LAO (n ≥ 6) is required to form the 2DEG, and a remarkable shift of O 2p orbitals toward higher energy in LAO layers is found, which is caused by the strain-induced change of the electrostatic potential. For the compressively strained HS system, the critical thickness of LAO film for forming 2DEG is between 5 and 6 unit cells of LAO. In addition, our calculations suggest that the interfacial charge carrier density and magnetic moment can be optimized when a moderate tensile strain is applied on the STO substrate in the ab-plane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...