Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Microbiol ; 206(4): 198, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558101

RESUMO

Micro- plastics (MPs) pose significant global threats, requiring an environment-friendly mode of decomposition. Microbial-mediated biodegradation and biodeterioration of micro-plastics (MPs) have been widely known for their cost-effectiveness, and environment-friendly techniques for removing MPs. MPs resistance to various biocidal microbes has also been reported by various studies. The biocidal resistance degree of biodegradability and/or microbiological susceptibility of MPs can be determined by defacement, structural deformation, erosion, degree of plasticizer degradation, metabolization, and/or solubilization of MPs. The degradation of microplastics involves microbial organisms like bacteria, mold, yeast, algae, and associated enzymes. Analytical and microbiological techniques monitor microplastic biodegradation, but no microbial organism can eliminate microplastics. MPs can pose environmental risks to aquatic and human life. Micro-plastic biodegradation involves fragmentation, assimilation, and mineralization, influenced by abiotic and biotic factors. Environmental factors and pre-treatment agents can naturally degrade large polymers or induce bio-fragmentation, which may impact their efficiency. A clear understanding of MPs pollution and the microbial degradation process is crucial for mitigating its effects. The study aimed to identify deteriogenic microorganism species that contribute to the biodegradation of micro-plastics (MPs). This knowledge is crucial for designing novel biodeterioration and biodegradation formulations, both lab-scale and industrial, that exhibit MPs-cidal actions, potentially predicting MPs-free aquatic and atmospheric environments. The study emphasizes the urgent need for global cooperation, research advancements, and public involvement to reduce micro-plastic contamination through policy proposals and improved waste management practices.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Biodegradação Ambiental , Indústrias , Técnicas Microbiológicas
2.
Biomedicines ; 11(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37509530

RESUMO

Molecular hydrogen is renowned as an odorless and colorless gas. The recommendations developed by China suggest that the inhalation of hydrogen molecules is currently advised in COVID-19 pneumonia treatment. The therapeutic effects of molecular hydrogens have been confirmed after numerous clinical trials and animal-model-based experiments, which have expounded that the low molecular weight of hydrogen enables it to easily diffuse and permeate through the cell membranes to produce a variety of biological impacts. A wide range of both chronic and acute inflammatory diseases, which may include sepsis, pancreatitis, respiratory disorders, autoimmune diseases, ischemia-reperfusion damages, etc. may be treated and prevented by using it. H2 can primarily be inoculated through inhalation, by drinking water (which already contains H2), or by administrating the injection of saline H2 in the body. It may play a pivotal role as an antioxidant, in regulating the immune system, in anti-inflammatory activities (mitochondrial energy metabolism), and cell death (apoptosis, pyroptosis, and autophagy) by reducing the formation of excessive reactive O2 species and modifying the transcription factors in the nuclei of the cells. However, the fundamental process of molecular hydrogen is still not entirely understood. Molecular hydrogen H2 has a promising future in therapeutics based on its safety and possible usefulness. The current review emphasizes the antioxidative, anti-apoptotic, and anti-inflammatory effects of hydrogen molecules along with the underlying principle and fundamental mechanism involved, with a prime focus on the coronavirus disease of 2019 (COVID-19). This review will also provide strategies and recommendations for the therapeutic and medicinal applications of the hydrogen molecule.

3.
J Arthropod Borne Dis ; 14(1): 106-115, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32766354

RESUMO

BACKGROUND: Present study was conducted to determine species composition of mosquitoes (larvae, pupae and adults) collected from ten different towns of Lahore from September 2014 to August 2015. METHODS: Mosquito larvae, pupae and adults (male and female) were collected by using dippers and aspirators from September 2014 to August 2015 in different sites of Lahore comprising of ten towns i.e. Iqbal, Aziz Bhatti, Data Ganj Baksh, Gulberg, Nishtar, Ravi, Samanabad, Shalimar, Wagah, and Lahore Cantonment. Mosquito larvae and adults were identified by standard entomological keys. Diversity, richness and rarity of mosquito fauna were analyzed by the Shannon, Simpson and Margalef indices respectively. RESULTS: In this study, a total of 8656 mosquitoes belonging to four genera namely Anopheles, Culex, Aedes and Mansonia were identified. Among fifteen species collected, Cx. quinquefasciatus was the most abundant species in the city having 25.8% relative abundance. However An. culicifacies s.l. (sensu lato) was reported as the least abundant species with 0.22% relative abundance. The highest diversity of mosquitoes was shown in the month of August (H= 2.25) while the lowest diversity was recorded June (H= 1.43). Extensive sewage water supported the maximum abundance of Cx. quinquifasciatus in urban areas of this city. CONCLUSIONS: This study has significantly elaborated the monthly varying species composition of mosquito fauna of this city. Hence this research will help us to find out the control strategies of mosquito borne diseases in this region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...