Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 191: 116830, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33476798

RESUMO

Concentrations of 28 novel and legacy perfluoroalkyl and polyfluoroalkyl substances (PFASs) in wastewater from 77 industrial plants in the largest industrial complex in Korea were determined. The industrial plants were of eight types (advanced electronic, battery, chemical, general electronic, glass and ceramic, metal, polymer, and textile). PFAS concentrations in river water receiving the wastewater were determined to assess the impact of wastewater from the industrial complex. Only 19 and nine target PFASs were detected in untreated industrial wastewater and river water, respectively. Novel PFASs such as F53B (6:2 chlorinated polyfluoroalkyl ether sulfonate) were not detected. The mean PFASs concentration in industrial wastewater treatment plant effluent was 5.18 µg/L. The mean total PFASs concentration was highest in advanced electronic plant effluent, second highest in general electronic plant effluent, and lowest in battery and chemical plant effluents. Perfluorohexane sulfonate was the dominant homolog, being detected in effluent from plants of all classes and contributing 96% of total discharged PFASs by mass. Perfluorooctane sulfonate (included in the Stockholm Convention) use has decreased markedly since previous studies. Perfluorooctane sulfonate has largely been replaced by PFASs with fewer than seven carbon atoms. A similar change was found for river water receiving industrial wastewater.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Monitoramento Ambiental , Fluorocarbonos/análise , República da Coreia , Rios , Águas Residuárias/análise , Água , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 762: 143160, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33131856

RESUMO

Marine organisms such as fish are at risk of exposure to petrogenic polycyclic aromatic hydrocarbons (PAHs) released in oil spills. PAH toxicities are affected by the rates of PAH biotransformation and elimination in fish tissues, but little information on these rates is available. In this study, the biotransformation and tissue distribution of methylated phenanthrenes-typical petrogenic PAHs found after oil spills-in black rockfish (Sebastes schlegelii) were investigated. Two groups of fish were used. Each fish in one group was given a single intragastric dose of 3-methylphenanthrene, and each fish in the other group was given a single intragastric dose of 3,6-dimethylphenanthrene. The fish were allowed to recover in purified sea water for 196 h. Methylated phenanthrenes were detected in only blood and liver for 24 h after dosing, but the concentrations decreased over time and > 98% had been eliminated by the end of the study. Four mono-hydroxylated metabolites of 3,6-dimethylphenanthrene and six mono-hydroxylated metabolites of 3-methylphenanthrene were tentatively identified for the first time from tandem mass spectrometry analyses of fish bile. The concentrations of these metabolites in bile remained constant for 192 h, suggesting that the metabolites could be used as biomarkers of rockfish exposure to petrogenic PAHs.


Assuntos
Perciformes , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Biotransformação , Hidrocarbonetos Policíclicos Aromáticos/análise
3.
Chemosphere ; 247: 125924, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31978661

RESUMO

Due to their use in various domestic and industrial formulations, benzalkonium compounds have been isolated in many environmental matrices. Sorption to soil components has been shown to play a key role in their environmental fate. Whereas sorption of benzalkonium compounds to soils is attributed to cation exchange and van der Waals forces, the relative contributions of these two mechanisms at environmental levels have not been clearly defined. In this study a previously reported algal toxicity assay-based method was employed to determine the distribution coefficients (Kd) of benzalkonium compounds between water and soil components, at environmental concentrations. Cation exchange capacity corrected Kd values for organic matter and clays were all within one order of magnitude. This implies that ion exchange is the dominant mechanism of sorption for benzalkonium compounds. When the sorption data were used to compute sorption energies for four homologues of benzalkonium ions, the magnitude of the free energy change of sorption increased with size of the molecule. The increase in sorption energy could be partly explained by increased energy of hydration with addition of methylene groups to the alkyl chain. A model that predicts sorption coefficients of benzalkonium compounds to soils using organic carbon content and cation exchange capacity was also defined. When tested using an artificial soil, the model estimates were all within one order of magnitude of the experimental values.


Assuntos
Compostos de Benzalcônio/química , Adsorção , Cátions , Argila/química , Troca Iônica , Modelos Químicos , Solo/química , Poluentes do Solo , Água
4.
Ecotoxicol Environ Saf ; 174: 491-497, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30856561

RESUMO

Benzalkonium compounds are widely used and found in environmental samples. Due to their amphiphilic nature, it is important to know sorption coefficients to account their bioavailability. However, currently available models describing their partitioning were developed using low molecular weight homologues and it cannot be ascertained whether they are applicable to their higher molecular weight homologues. Reasons for the scarcity of data on highly sorptive compounds include the lack of reliable quantification techniques for analyzing these chemicals at environmentally relevant levels. This study, therefore, reports on an algal growth inhibition assay-based method for the determination of kaolinite/water distribution coefficients for benzalkonium compounds at their environmentally relevant concentration range. Sorption to clay was computed using the difference between median effective concentration determined in a culture with kaolinite and that derived from a culture grown in standard medium. A kinetic model was used to account for uptake into algal cells and to calculate free concentrations. Due to the sensitivity of the algal species, Pseudokirchneriella subcapitata, it was possible to determine distribution coefficients below micromole per liter concentrations. The computed distribution coefficients showed a linear increase with number of carbon atoms in the alkyl chain up to 14. The proposed bioassay-based method should be applicable to determine distribution coefficients for highly hydrophobic chemicals and ionic liquids at a concentration range lower than typical analytical limits.


Assuntos
Compostos de Benzalcônio/análise , Clorófitas/efeitos dos fármacos , Argila/química , Caulim/química , Modelos Teóricos , Água/química , Adsorção , Compostos de Benzalcônio/química , Compostos de Benzalcônio/toxicidade , Bioensaio , Clorófitas/crescimento & desenvolvimento , Interações Hidrofóbicas e Hidrofílicas , Cinética , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...