Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 34(29): 8678-8684, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-27039990

RESUMO

Diatoms are unicellular algae that construct cell walls called frustules by the precipitation of silica, using special proteins that order the silica into a wide variety of nanostructures. The diatom species Cylindrotheca fusiformis contains proteins called silaffins within its frustules, which are believed to assemble into supramolecular matrices that serve as both accelerators and templates for silica deposition. Studying the properties of these biosilicification proteins has allowed the design of new protein and peptide systems that generate customizable silica nanostructures, with potential generalization to other mineral systems. It is essential to understand the mechanisms of aggregation of the protein and its coprecipitation with silica. We continue previous investigations into the peptide R5, derived from silaffin protein sil1p, shown to independently catalyze the precipitation of silica nanospheres in vitro. We used the solid-state NMR technique 13C{29Si} and 15N{29Si} REDOR to investigate the structure and interactions of R5 in complex with coprecipitated silica. These experiments are sensitive to the strength of magnetic dipole-dipole interactions between the 13C nuclei in R5 and the 29Si nuclei in the silica and thus yield distance between parts of R5 and 29Si in silica. Our data show strong interactions and short internuclear distances of 3.74 ± 0.20 Å between 13C═O Lys3 and silica. On the other hand, the Cα and Cß nuclei show little or no interaction with 29Si. This selective proximity between the K3 C═O and the silica supports a previously proposed mechanism of rapid silicification of the antimicrobial peptide KSL (KKVVFKVKFK) through an imidate intermediate. This study reports for the first time a direct interaction between the N-terminus of R5 and silica, leading us to believe that the N-terminus of R5 is a key component in the molecular recognition process and a major factor in silica morphogenesis.


Assuntos
Diatomáceas/metabolismo , Lisina/química , Lisina/metabolismo , Espectroscopia de Ressonância Magnética , Nanoestruturas/química , Dióxido de Silício/metabolismo , Diatomáceas/química , Peptídeos/química , Proteínas/química , Dióxido de Silício/química
2.
Biopolymers ; 101(5): 525-35, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24114119

RESUMO

Amelogenin, the major extracellular matrix protein of developing tooth enamel is intrinsically disordered. Through its interaction with other proteins and mineral, amelogenin assists enamel biomineralization by controlling the formation of highly organized enamel crystal arrays. We used circular dichroism (CD), dynamic light scattering (DLS), fluorescence, and NMR spectroscopy to investigate the folding propensity of recombinant porcine amelogenin rP172 following its interaction with SDS, at levels above critical micelle concentration. The rP172-SDS complex formation was confirmed by DLS, while an increase in the structure moiety of rP172 was noted through CD and fluorescence experiments. Fluorescence quenching analyses performed on several rP172 mutants where all but one Trp was replaced by Tyr at different sequence regions confirmed that the interaction of amelogenin with SDS micelles occurs via the N-terminal region close to Trp25 where helical segments can be detected by NMR. NMR spectroscopy and structural refinement calculations using CS-Rosetta modeling confirm that the highly conserved N-terminal domain is prone to form helical structure when bound to SDS micelles. Our findings reported here reveal interactions leading to significant changes in the secondary structure of rP172 upon treatment with SDS. These interactions may reflect the physiological relevance of the flexible nature of amelogenin and its sequence specific helical propensity that might enable it to structurally adapt with charged and potential targets such as cell surface, mineral, and other proteins during enamel biomineralization.


Assuntos
Amelogenina/química , Esmalte Dentário/química , Micelas , Dodecilsulfato de Sódio/química , Sequência de Aminoácidos , Animais , Dicroísmo Circular , Dados de Sequência Molecular , Proteínas Mutantes/química , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Espectrometria de Fluorescência , Sus scrofa , Termodinâmica , Triptofano/metabolismo
3.
Biochemistry ; 50(41): 8880-7, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21928802

RESUMO

AP7 is a nacre-associated protein of the mollusk shell that forms supramolecular assemblies that nucleate single-crystal aragonite in vitro. AP7 possesses two major sequence regions: a random coil 30-amino acid N-terminal domain (AP7N) and a partially disordered 36-amino acid C-terminal domain (AP7C) that exhibits imperfect sequence homology to the C subclass of the intracellular RING domain family. We report here new findings that implicate the C-RING domain in AP7-mediated supramolecular assembly and single-crystal mineral formation. AP7 protein spontaneously self-assembles over a pH range of 4-9 and is monomeric at pH >9.5. AP7N and AP7C both oligomerize over the pH range of 4-9, with the AP7C sequence closely resembling AP7 in terms of particle morphology and size. In vitro mineralization experiments demonstrate that both AP7N and AP7C form supramolecular assemblies that nucleate single-crystal calcium carbonates. Comparison of previously published nuclear magnetic resonance-based structures of AP7C and AP7N reveals the significant presence of complementary anionic-cationic electrostatic molecular surfaces on AP7C that are not found on AP7N, and this may explain the noted discrepancies between the two domains in terms of self-assembly and single-crystal nucleation. We conclude that the C-RING-like sequence is an important site for AP7 self-association and mineral nucleation, and this represents the first known instance of a RING-like sequence performing these functions within an extracellular protein.


Assuntos
Proteínas de Transporte/química , Nácar/química , Animais , Ânions , Carbonato de Cálcio/química , Cátions , Concentração de Íons de Hidrogênio , Luz , Espectroscopia de Ressonância Magnética/métodos , Microscopia Eletrônica de Transmissão/métodos , Minerais/química , Moluscos , Estrutura Terciária de Proteína , Proteínas/química , Espalhamento de Radiação , Eletricidade Estática
4.
J Biol Chem ; 286(40): 34643-53, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21840988

RESUMO

Amelogenin self-assembles to form an extracellular protein matrix, which serves as a template for the continuously growing enamel apatite crystals. To gain further insight into the molecular mechanism of amelogenin nanosphere formation, we manipulated the interactions between amelogenin monomers by altering pH, temperature, and protein concentration to create isolated metastable amelogenin oligomers. Recombinant porcine amelogenins (rP172 and rP148) and three different mutants containing only a single tryptophan (Trp(161), Trp(45), and Trp(25)) were used. Dynamic light scattering and fluorescence studies demonstrated that oligomers were metastable and in constant equilibrium with monomers. Stable oligomers with an average hydrodynamic radius (R(H)) of 7.5 nm were observed at pH 5.5 between 4 and 10 mg · ml(-1). We did not find any evidence of a significant increase in folding upon self-association of the monomers into oligomers, indicating that they are disordered. Fluorescence experiments with single tryptophan amelogenins revealed that upon oligomerization the C terminus of amelogenin (around residue Trp(161)) is exposed at the surface of the oligomers, whereas the N-terminal region around Trp(25) and Trp(45) is involved in protein-protein interaction. The truncated rP148 formed similar but smaller oligomers, suggesting that the C terminus is not critical for amelogenin oligomerization. We propose a model for nanosphere formation via oligomers, and we predict that nanospheres will break up to form oligomers in mildly acidic environments via histidine protonation. We further suggest that oligomeric structures might be functional components during maturation of enamel apatite.


Assuntos
Amelogenina/química , Nanosferas/química , Nanotecnologia/métodos , Animais , Anisotropia , Matriz Extracelular/metabolismo , Concentração de Íons de Hidrogênio , Luz , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Espalhamento de Radiação , Espectrometria de Fluorescência/métodos , Suínos , Triptofano/química
5.
Protein Sci ; 20(4): 724-34, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21351181

RESUMO

Amelogenins are an intrinsically disordered protein family that plays a major role in the development of tooth enamel, one of the most highly mineralized materials in nature. Monomeric porcine amelogenin possesses random coil and residual secondary structures, but it is not known which sequence regions would be conformationally attractive to potential enamel matrix targets such as other amelogenins (self-assembly), other matrix proteins, cell surfaces, or biominerals. To address this further, we investigated recombinant porcine amelogenin (rP172) using "solvent engineering" techniques to simultaneously promote native-like structure and induce amelogenin oligomerization in a manner that allows identification of intermolecular contacts between amelogenin molecules. We discovered that in the presence of 2,2,2-trifluoroethanol (TFE) significant folding transitions and stabilization occurred primarily within the N- and C-termini, while the polyproline Type II central domain was largely resistant to conformational transitions. Seven Pro residues (P2, P127, P130, P139, P154, P157, P162) exhibited conformational response to TFE, and this indicates these Pro residues act as folding enhancers in rP172. The remaining Pro residues resisted TFE perturbations and thus act as conformational stabilizers. We also noted that TFE induced rP172 self-association via the formation of intermolecular contacts involving P4-H6, V19-P33, and E40-T58 regions of the N-terminus. Collectively, these results confirm that the N- and C-termini of amelogenin are conformationally responsive and represent potential interactive sites for amelogenin-target interactions during enamel matrix mineralization. Conversely, the Pro, Gln central domain is resistant to folding and this may have important functional significance for amelogenin.


Assuntos
Amelogenina/química , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Amelogenina/genética , Sequência de Aminoácidos , Animais , Esmalte Dentário/química , Dados de Sequência Molecular , Peptídeos/química , Multimerização Proteica , Proteínas Recombinantes/genética , Suínos , Trifluoretanol/química
6.
Structure ; 18(12): 1678-87, 2010 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-21134646

RESUMO

Protein-biomineral interactions are paramount to materials production in biology, including the mineral phase of hard tissue. Unfortunately, the structure of biomineral-associated proteins cannot be determined by X-ray crystallography or solution nuclear magnetic resonance (NMR). Here we report a method for determining the structure of biomineral-associated proteins. The method combines solid-state NMR (ssNMR) and ssNMR-biased computational structure prediction. In addition, the algorithm is able to identify lattice geometries most compatible with ssNMR constraints, representing a quantitative, novel method for investigating crystal-face binding specificity. We use this method to determine most of the structure of human salivary statherin interacting with the mineral phase of tooth enamel. Computation and experiment converge on an ensemble of related structures and identify preferential binding at three crystal surfaces. The work represents a significant advance toward determining structure of biomineral-adsorbed protein using experimentally biased structure prediction. This method is generally applicable to proteins that can be chemically synthesized.


Assuntos
Biologia Computacional/métodos , Minerais/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Proteínas/química , Algoritmos , Simulação por Computador , Cristalografia por Raios X , Previsões/métodos , Humanos , Minerais/química , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Proteínas/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
7.
Biomacromolecules ; 11(10): 2539-44, 2010 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-20831150

RESUMO

The formation of calcite prism architecture in the prismatic layer of the mollusk shell involves the participation of a number of different proteins. One protein family, Asprich, has been identified as a participant in amorphous calcium carbonate stabilization and calcite architecture in the prismatic layer of the mollusk, Atrina rigida . However, the functional role(s) of this protein family are not fully understood due to the fact that insufficient quantities of these proteins are available for experimentation. To overcome this problem, we employed stepwise solid-phase synthesis to recreate one of the 10 members of the Asprich family, the 61 AA single chain protein, Asprich "3". We find that the Asprich "3" protein inhibits the formation of rhombohedral calcite crystals and induces the formation of round calcium carbonate deposits in vitro that contain calcite and amorphous calcium carbonate (ACC). This mineralization behavior does not occur under control conditions, and the formation of ACC and calcite is similar to that reported for the recombinant form of the Asprich "g" protein. Circular dichroism studies reveal that Asprich "3" is an intrinsically disordered protein, predominantly random coil (66%), with 20-30% ß-strand content, a small percentage of ß-turn, and little if any α-helical content. This protein is not extrinsically stabilized by Ca(II) ions but can be stabilized by 2,2,2-trifluoroethanol to form a structure consisting of turn-like and random coil characteristics. This finding suggests that Asprich "3" may require other extrinsic interactions (i.e., with mineral or ionic clusters or other macromolecules) to achieve folding. In conclusion, Asprich "3" possesses in vitro functional and structural qualities that are similar to other reported for other Asprich protein sequences.


Assuntos
Bivalves/química , Carbonato de Cálcio/química , Proteínas/química , Sequência de Aminoácidos , Animais , Bivalves/metabolismo , Bivalves/ultraestrutura , Carbonato de Cálcio/metabolismo , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Cristalização , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Difração de Raios X
8.
Surf Sci ; 604(15-16): L39-L42, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20676391

RESUMO

Organisms use proteins such as statherin to control the growth of hydroxyapatite (HAP), which is the principal component of teeth and bone. Though much emphasis has been placed on the acidic character of these proteins, the role of their basic amino acids is not well understood. In this work, solid state nuclear magnetic resonance was used to probe the interaction of the basic arginine side chains with the HAP surface. Statherin samples were individually labeled at each arginine site, and the distance to the surface was measured using the Rotational Echo DOuble Resonance (REDOR) technique. The results indicate a strong coupling between the R9 and R10 residues and the phosphorus atoms on the surface, with internuclear distances of 4.62 ± 0.29 Å and 4.53 ± 0.16 Å, respectively. Conversely, results also indicate weak coupling between R13 and the surface, suggesting this residue is more removed from the surface than R9 and R10. Combining these results with previous data, a new model for the molecular recognition of HAP by statherin is constructed.

9.
Biomacromolecules ; 10(12): 3298-305, 2009 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-19904951

RESUMO

Several biomineralization proteins that exhibit intrinsic disorder also possess sequence regions that are homologous to nonmineral associated folded proteins. One such protein is the amorphous calcium carbonate binding protein (ACCBP), one of several proteins that regulate the formation of the oyster shell and exhibit 30% conserved sequence identity to the acetylcholine binding protein sequences. To gain a better understanding of the ACCBP protein, we utilized bioinformatic approaches to identify the location of disordered and folded regions within this protein. In addition, we synthesized a 50 AA polypeptide, ACCN, representing the N-terminal domain of the mature processed ACCBP protein. We then utilized this polypeptide to determine the mineralization activity and qualitative structure of the N-terminal region of ACCBP. Our bioinformatic studies indicate that ACCBP consists of a ten-stranded beta-sandwich structure that includes short disordered sequence blocks, two of which reside within the primarily helical and surface-accessible ACCN sequence. Circular dichroism studies reveal that ACCN is partially disordered in solution; however, ACCN can be induced to fold into an alpha helix in the presence of TFE. Furthermore, we confirm that the ACCN sequence is multifunctional; this sequence promotes radial calcite polycrystal growth on Kevlar threads and forms supramolecular assemblies in solution that contain amorphous-appearing deposits. We conclude that the partially disordered ACCN sequence is a putative site for mineralization activity within the ACCBP protein and that the presence of short disordered sequence regions within the ACCBP fold are essential for function.


Assuntos
Acetilcolina/química , Calcificação Fisiológica , Carbonato de Cálcio/química , Pinctada/fisiologia , Receptores Nicotínicos/química , Sequência de Aminoácidos , Animais , Biologia Computacional , Cristalização , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/química , Pinctada/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
10.
Langmuir ; 25(20): 12136-43, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19678690

RESUMO

The side chain carboxyl groups of acidic proteins found in the extra-cellular matrix (ECM) of mineralized tissues play a key role in promoting or inhibiting the growth of minerals such as hydroxyapatite (HAP), the principal mineral component of bone and teeth. Among the acidic proteins found in the saliva is statherin, a 43-residue tyrosine-rich peptide that is a potent lubricant in the salivary pellicle and an inhibitor of both HAP crystal nucleation and growth. Three acidic amino acids-D1, E4, and E5-are located in the N-terminal 15 amino acid segment, with a fourth amino acid, E26, located outside the N-terminus. We have utilized (13)C{(31)P} REDOR NMR to analyze the role played by acidic amino acids in the binding mechanism of statherin to the HAP surface by measuring the distance between the delta-carboxyl (13)C spins of the three glutamic acid side chains of statherin (residues E4, E5, E26) and (31)P spins of the phosphate groups at the HAP surface. (13)C{(31)P} REDOR studies of glutamic-5-(13)C acid incorporated at positions E4 and E26 indicate a (13)C-(31)P distance of more than 6.5 A between the side chain carboxyl (13)C spin of E4 and the closest (31)P in the HAP surface. In contrast, the carboxyl (13)C spin at E5 has a much shorter (13)C-(31)P internuclear distance of 4.25 +/- 0.09 A, indicating that the carboxyl group of this side chain interacts directly with the surface. (13)C T(1rho) and slow-spinning MAS studies indicate that the motions of the side chains of E4 and E5 are more restricted than that of E26. Together, these results provide further insight into the molecular interactions of statherin with HAP surfaces.


Assuntos
Durapatita/metabolismo , Ácido Glutâmico/metabolismo , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/metabolismo , Sequência de Aminoácidos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Solventes/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...