Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(7): 4125-4130, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35113112

RESUMO

Advancing the atomistic level understanding of aqueous dissolution of multicomponent materials is essential. We combined ReaxFF and experiments to investigate the dissolution at the Li1+xAlxTi2-x(PO4)3-water interface. We demonstrate that surface dissolution is a sequentially dynamic process. The phosphate dissolution destabilizes the NASICON structure, which triggers a titanium-rich secondary phase formation.

2.
ACS Appl Mater Interfaces ; 13(40): 48071-48087, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34581562

RESUMO

Electrodes for solid-state batteries require the conduction of both ions and electrons for extraction of the energy from the active material. In this study, we apply cold sintering to a model composite cathode system to study how low-temperature densification enables a degree of control over the mixed conducting properties of such systems. The model system contains the NASICON-structured Na3V2(PO4)3 (NVP) active material, NASICON-structured solid electrolyte (Na3Zr2Si2PO12, NZSP), and electron-conducting carbon nanofiber (CNF). Pellets of varying weight fractions of components were cold-sintered to greater than 90% of the theoretical density at 350-375 °C, a 360 MPa uniaxial pressure, and with a 3 h dwell time using sodium hydroxide as the transient sintering aid. The bulk conductivity of the diphasic composites was measured with impedance spectroscopy; the total conductivities of the composites are increased from 3.8 × 10-8 S·cm-1 (pure NVP) to 5.81 × 10-6 S·cm-1 (60 wt % NZSP) and 1.31 × 10-5 S·cm-1 (5 wt % CNF). Complimentary direct current polarization experiments demonstrate a rational modulation in transference number (τ) of the composites; τ of pure NVP = 0.966, 60 wt % NZSP = 0.995, and 5 wt % CNF = 0.116. Finally, all three materials are combined into triphasic composites to serve as solid-state cathodes in a half-cell configuration with a liquid electrolyte. Electrochemical activity of the active material is maintained, and the capacity/energy density is comparable to prior work.

3.
Inorg Chem ; 60(17): 13453-13460, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34403579

RESUMO

Cold sintering (CS) is a chemically driven densification technique enabling a substantial decrease in the sintering temperature of oxides, by several hundreds of degrees Celsius. Although the densification process in CS is known to be mainly driven by pressure solution creep, additional fundamental aspects driving the interfacial chemistry reactions are still a subject of debate. Herein, we focus on the aspect of speciation in the densification process. The densification of zinc oxide (ZnO) by CS using zinc acetylacetonate hydrate (Zn(acac)2·xH2O), a versatile ligand often used as a precursor for ZnO synthesis in wet chemistry, is reported. The successful densification of ZnO using H2O and Zn(acac)2·xH2O confirms the importance of speciation in CS, as ZnO has a very low solubility in pure H2O. The evolution of the system at different stages of sintering and the role of the Zn(acac)2·xH2O species were evaluated.

4.
Nano Lett ; 21(8): 3451-3457, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33852297

RESUMO

Molten hydroxides, often used for crystal growth and nanoparticle synthesis, have recently been applied for the single step densification of several inorganic materials under moderate uniaxial pressures and 1000 °C below their usual sintering temperatures. The latter approach, termed cold sintering process (CSP), is a mechanochemically driven process that enables the densification of inorganic materials through a dissolution-precipitation creep mechanism. In this study, we report the main densification mechanisms of BaTiO3 in a NaOH-KOH eutectic mixture. A chemical insight at the atomistic level, investigated by ReaxFF molecular dynamics simulations, offers plausible ionic complex formation scenarios and reactions at the BaTiO3/molten hydroxide interface, enabling the dissolution-precipitation reactions and the subsequent cold sintering of BaTiO3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...