Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(48): 33875-33886, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38020028

RESUMO

In the present study, the Density Functional Theory (DFT) was employed to computationally investigate the potential application of newly developed lead-free perovskites with the formula of TlSnX3 (X = Cl, Br, or I) as absorbers in the perovskite solar cells and as thermoelectric materials. The Quantum Espresso code was implemented to optimize the structural configuration of the perovskites and to compute a range of their properties, including their elasticity, electronic behavior, optical characteristics, and thermoelectric attributes. The findings indicated that these perovskite materials exhibit both chemical and structural stability and that TlSnBr3 and TlSnI3 perovskites possess high dynamic stability. The findings additionally revealed direct (R → R) band gap energy values of 0.87 eV for TlSnCl3, 0.52 eV for TlSnBr3, and 0.28 eV for TlSnI3 using the GGA-PBE functional. Further analysis of their elastic properties suggested that these materials are mechanically stable and displayed overall ductile behaviour. They also demonstrated remarkable optical properties, particularly a high absorption coefficient, ranging from 105 cm-1 to 106 cm-1. Consequently, it is reasonable to infer that these materials exhibit considerable potential for utilization in solar cells. Finally, the evaluation of their thermoelectric properties has revealed the highly promising potential of these materials to be employed in thermoelectric applications.

2.
Heliyon ; 9(7): e18096, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37519720

RESUMO

Pneumonia is a dangerous disease that can lead to death without proper treatment. It is caused by a bacterial infection that leads to the inflammation of the air sacs in human lungs and potentially results in a lung abscess if not properly untreated. Here in this article we introduced a novel mathematical model to investigate the potential impact of Pneumonia treatments on disease transmission dynamics. The model is then validated against data from Jakarta City, Indonesia. In the model, the infection stage in infected individuals is categorized into three stages: the Exposed, Congestion and Hepatization, and the Resolution stage. Mathematical analysis shows that the disease-free equilibrium is always locally asymptotically stable when the basic reproduction number is less than one and unstable when larger than one. The endemic equilibrium only exists when the basic reproduction number is larger than one. Our proposed model always exhibits a forward bifurcation when the basic reproduction number is equal to one, which indicates local stability of the endemic equilibrium when the basic reproduction number is larger than one but close to one. A global sensitivity analysis shows that the infection parameter is the most influential parameter in determining the size of the total infected individual in the endemic equilibrium point. Furthermore, we also found that the hospitalization and the acceleration of the treatment duration can be used to control the level of endemic size. An optimal control problem was constructed from the earlier model and analyzed using the Pontryagin Maximum Principle. We find that the implementation of treatment in the earlier stage of infected individuals is needed to avoid a more significant outbreak of Pneumonia in a long-term intervention.

3.
Trop Med Infect Dis ; 7(10)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36288004

RESUMO

In the present study, we propose and analyze an epidemic mathematical model for malaria dynamics, considering multiple recurrent phenomena: relapse, reinfection, and recrudescence. A limitation in hospital bed capacity, which can affect the treatment rate, is modeled using a saturated treatment function. The qualitative behavior of the model, covering the existence and stability criteria of the endemic equilibrium, is investigated rigorously. The concept of the basic reproduction number of the proposed model is obtained using the concept of the next-generation matrix. We find that the malaria-free equilibrium point is locally asymptotically stable if the basic reproduction number is less than one and unstable if it is larger than one. Our observation on the malaria-endemic equilibrium of the proposed model shows possible multiple endemic equilibria when the basic reproduction number is larger or smaller than one. Hence, we conclude that a condition of a basic reproduction number less than one is not sufficient to guarantee the extinction of malaria from the population. To test our model in a real-life situation, we fit our model parameters using the monthly incidence data from districts in Central Sumba, Indonesia called Wee Luri, which were collected from the Wee Luri Health Center. Using the first twenty months' data from Wee Luri district, we show that our model can fit the data with a confidence interval of 95%. Both analytical and numerical experiments show that a limitation in hospital bed capacity and reinfection can trigger a more substantial possibility of the appearance of backward bifurcation. On the other hand, we find that an increase in relapse can reduce the chance of the appearance of backward bifurcation. A non-trivial result appears in that a higher probability of recrudescence (treatment failure) does not always result in the appearance of backward bifurcation. From the global sensitivity analysis using a combination of Latin hypercube sampling and partial rank correlation coefficient, we found that the initial infection rate in humans and the mosquito infection rate are the most influential parameters in determining the increase in total new human infections. We expand our model as an optimal control problem by including three types of malaria interventions, namely the use of bed net, hospitalization, and fumigation as a time-dependent variable. Using the Pontryagin maximum principle, we characterize our optimal control problem. Results from our cost-effectiveness analysis suggest that hospitalization only is the most cost-effective strategy required to control malaria disease.

4.
Math Biosci Eng ; 17(6): 6355-6389, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-33378859

RESUMO

A total of more than 27 million confirmed cases of the novel coronavirus outbreak, also known as COVID-19, have been reported as of September 7, 2020. To reduce its transmission, a number of strategies have been proposed. In this study, mathematical models with nonpharmaceutical and pharmaceutical interventions were formulated and analyzed. The first model was formulated without the inclusion of community awareness. The analysis focused on investigating the mathematical behavior of the model, which can explain how medical masks, medical treatment, and rapid testing can be used to suppress the spread of COVID-19. In the second model, community awareness was taken into account, and all the interventions considered were represented as time-dependent parameters. Using the center-manifold theorem, we showed that both models exhibit forward bifurcation. The infection parameters were obtained by fitting the model to COVID-19 incidence data from three provinces in Indonesia, namely, Jakarta, West Java, and East Java. Furthermore, a global sensitivity analysis was performed to identify the most influential parameters on the number of new infections and the basic reproduction number. We found that the use of medical masks has the greatest effect in determining the number of new infections. The optimal control problem from the second model was characterized using the well-known Pontryagin's maximum principle and solved numerically. The results of a cost-effectiveness analysis showed that community awareness plays a crucial role in determining the success of COVID-19 eradication programs.


Assuntos
COVID-19/epidemiologia , COVID-19/terapia , COVID-19/transmissão , Controle de Doenças Transmissíveis/métodos , Educação em Saúde/métodos , Algoritmos , Número Básico de Reprodução , COVID-19/prevenção & controle , Análise Custo-Benefício , Surtos de Doenças , Humanos , Incidência , Indonésia/epidemiologia , Modelos Teóricos , Equipamento de Proteção Individual , Informática em Saúde Pública
5.
Heliyon ; 6(11): e05345, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33204872

RESUMO

Dengue is a public health problem with around 390 million cases annually and is caused by four distinct serotypes. Infection by one of the serotypes provides lifelong immunity to that serotype but have a higher chance of attracting the more dangerous forms of dengue in subsequent infections. Therefore, a perfect strategy against dengue is required. Dengue vaccine with 42-80% efficacy level has been licensed for the use in reducing disease transmission. However, this may increase the likelihood of obtaining the dangerous forms of dengue. In this paper, we have developed single and two-serotype dengue mathematical models to investigate the effects of vaccination on dengue transmission dynamics. The model is validated against dengue data from Kupang city, Indonesia. We investigate the effects of vaccination on seronegative and seropositive individuals and perform a global sensitivity analysis to determine the most influential parameters of the model. A sensitivity analysis suggests that the vaccination rate, the transmission probability and the biting rate have greater effects on the reduction of the proportion of dengue cases. Interestingly, with vaccine implementation, the mosquito-related parameters do not have significant impact on the reduction in the proportion of dengue cases. If the vaccination is implemented on seronegative individuals only, it may increase the likelihood of obtaining the severe dengue. To reduce the proportion of severe dengue cases, it is better to vaccinate seropositive individuals. In the context of Kupang City where the majority of individuals have been infected by at least one dengue serotype, the implementation of vaccination strategy is possible. However, understanding the serotype-specific differences is required to optimise the delivery of the intervention.

6.
Trop Med Infect Dis ; 5(2)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32413992

RESUMO

The use of vaccine and Wolbachia has been proposed as strategies against dengue. Research showed that the Wolbachia intervention is highly effective in areas with low to moderate transmission levels. On the other hand, the use of vaccine is strongly effective when it is implemented on seropositive individuals and areas with high transmission levels. The question that arises is could the combination of both strategies result in higher reduction in the number of dengue cases? This paper seeks to answer the aforementioned question by the use of a mathematical model. A deterministic model in the presence of vaccine and Wolbachia has been developed and analysed. Numerical simulations were presented and public health implications were discussed. The results showed that the performance of Wolbachia in reducing the number of dengue cases is better than that of vaccination if the vaccine efficacy is low, otherwise, the use of vaccine is sufficient to reduce dengue incidence and hence the combination of Wolbachia and vaccine is not necessary.

7.
BMC Res Notes ; 13(1): 201, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252815

RESUMO

OBJECTIVES : We study the optimal control strategy for the effects of hard water consumption on kidney-related diseases. The mathematical model has been formulated and studied to gain insights on the optimal control strategy on the effects of hard-water consumption on kidney-related diseases. The positivity and boundedness of the solutions are determined. A global sensitivity analysis has been performed and the numerical solutions have been carried out. RESULTS : A global sensitivity analysis shows that the control on water is an important parameter. This can reduce the proportion of individuals with kidney-dysfunction and hence reduces the proportion of individuals with kidney-related diseases. Furthermore, the numerical solutions show that with the optimal control, the proportion of individuals with kidney-related diseases can be minimised.


Assuntos
Água Potável/química , Água Potável/normas , Ingestão de Líquidos , Nefropatias/prevenção & controle , Modelos Teóricos , Humanos
8.
Heliyon ; 5(1): e01130, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30723821

RESUMO

Fibonacci numbers or Fibonacci sequence is among the most popular numbers or sequence in Mathematics. In this paper, we discuss the sequence in a population dynamics perspective. We discuss the early development of the sequence and interpret the sequence as a number of a hypothetical population. The governing equation that produces the Fibonacci sequence is written in a matrix form having a square matrix A. We show the relation of the eigenvalues, eigenvectors, and eigenspaces to the matrix with the dynamics of the sequence. We also generalize the matrix equation so that it governs a more realistic model of the hypothetical population. Some results regarding the modified golden ratio are presented.

9.
Theor Popul Biol ; 111: 9-15, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27217229

RESUMO

Use of the Wolbachia bacterium is a proposed new strategy to reduce dengue transmission, which results in around 390 million individuals infected annually. In places with strong variations in climatic conditions such as temperature and rainfall, dengue epidemics generally occur only at a certain time of the year. Where dengue is not endemic, the time of year in which imported cases enter the population plays a crucial role in determining the likelihood of outbreak occurrence. We use a mathematical model to study the effects of Wolbachia on dengue transmission dynamics and dengue seasonality. We focus in regions where dengue is not endemic but can spread due to the presence of a dengue vector and the arrival of people with dengue on a regular basis. Our results show that the time-window in which outbreaks can occur is reduced in the presence of Wolbachia-carrying Aedes aegypti mosquitoes by up to six weeks each year. We find that Wolbachia reduces overall case numbers by up to 80%. The strongest effect is obtained when the amplitude of the seasonal forcing is low (0.02-0.30). The benefits of Wolbachia also depend on the transmission rate, with the bacteria most effective at moderate transmission rates ranging between 0.08-0.12. Such rates are consistent with fitted estimates for Cairns, Australia.


Assuntos
Dengue/epidemiologia , Surtos de Doenças/prevenção & controle , Modelos Teóricos , Controle Biológico de Vetores , Wolbachia/fisiologia , Aedes , Animais , Dengue/prevenção & controle , Dengue/transmissão , Humanos
10.
Math Biosci ; 262: 157-66, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25645184

RESUMO

Use of the bacterium Wolbachia is an innovative new strategy designed to break the cycle of dengue transmission. There are two main mechanisms by which Wolbachia could achieve this: by reducing the level of dengue virus in the mosquito and/or by shortening the host mosquito's lifespan. However, although Wolbachia shortens the lifespan, it also gives a breeding advantage which results in complex population dynamics. This study focuses on the development of a mathematical model to quantify the effect on human dengue cases of introducing Wolbachia into the mosquito population. The model consists of a compartment-based system of first-order differential equations; seasonal forcing in the mosquito population is introduced through the adult mosquito death rate. The analysis focuses on a single dengue outbreak typical of a region with a strong seasonally-varying mosquito population. We found that a significant reduction in human dengue cases can be obtained provided that Wolbachia-carrying mosquitoes persist when competing with mosquitoes without Wolbachia. Furthermore, using the Wolbachia strain WMel reduces the mosquito lifespan by at most 10% and allows them to persist in competition with non-Wolbachia-carrying mosquitoes. Mosquitoes carrying the WMelPop strain, however, are not likely to persist as it reduces the mosquito lifespan by up to 50%. When all other effects of Wolbachia on the mosquito physiology are ignored, cytoplasmic incompatibility alone results in a reduction in the number of human dengue cases. A sensitivity analysis of the parameters in the model shows that the transmission probability, the biting rate and the average adult mosquito death rate are the most important parameters for the outcome of the cumulative proportion of human individuals infected with dengue.


Assuntos
Aedes/microbiologia , Aedes/virologia , Dengue/transmissão , Wolbachia/fisiologia , Animais , Dengue/epidemiologia , Dengue/prevenção & controle , Humanos , Longevidade , Conceitos Matemáticos , Modelos Biológicos , Controle Biológico de Vetores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...